arW
8891

arbe 88

Cornell University Library

The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.

RUDIMENTS OF MUSICAL GRAMMAR.

1018
5129
BY
JOHN H ULLAH, LLD.,
PROFESSOR IN QUEEN'S COLLEGE, LONDON.

NEW EDITION.

LONDON:
LONGMANS, GREEN, READER, AND DYER
AND
LAMBORN COCK, 23, HOLLES STREET.

ar W 8891

F. 95120

Wailantyne fpress

rallantyne, hanson ano co., mdinburga CHANDOS STREET, LONDON

PREFACE.

The title of the following work will, it may be hoped, render any explanation of its aims unnecessary. The mode of treatment of the subject, and the order in which the different branches of it are brought before the student, differing essentially from those adopted in most other works of the same kind, require, however, a few prefatory remarks.

We often find the earlier chapters of rudimentary treatises, whether on music or any other subject, occupied, not with attempts to convey ideas of the things to be first studied, but with explanations of the symbols which represent them,-many of these latter, perhaps, not being called into requisition till an advanced period in the study, when they have to be learned a second time. Thus the beginner in music is made to exhaust the subject of the stave before he is in the least informed as to the naturs of the scale; or is called upon to consider the peculiarities of five-crotchet time, while as yet he has no practical acquaintance with the first principles of rhythm. In the following work no attempt is made to introduce the student to the alphabet of music till he has learned something about music, or, more properly, the musical system itself; nor is he instructed in the different kinds of measure, nor even made aware of the existence of bars, until he has acquired some idea of the limits of a musical phrase, and the nature of a musical foot,-things altogether independent of any forms by which they may be represented, and which, as they certainly existed ages before the invention of the present musical alphabet, will as
certainly exist ages after that ingenious contrivance has become matter of history, or even of speculation.

The history of an art or science may often be brought to bear practically on the process of teaching it; and the order in which discoveries or improvements have been made will often suggest that in which a knowledge of them may best be communicated. Se that the consideration even of exploded theories and obsolete forms may not be without its use, as keys to those which have superseded them. The musical student, for instance, will never appreciate the special merits of modern, unless he have learnt something of ancient, tonality; nor would it be easy to devise any shorter or more simple method of explaining the nature of a mode, than through acquaintance with the fact that, though but two modes are used by modern musicians, the number of modes possible is only limited by that of the counds of the natural scale. This latter fact is briefly alluded to in an early chapter, and more fully treated in a later one the object of which has been rather to excite than to satisfy curiosity on a very interesting branch of musical science.

The chapters on the Alto and Tenor Staves-part of a subject treated elsewhere* by the writer more fully-will, it is hoped, be found sufficient to meet the practical wants of the student. The practice of writing alto and tenor parts an octave higher than they are to be sung has no doubt largely superseded the older and more simple one of writing them at their proper pitch. Whether this practice prove permanent or not, the student may rest assured that, unless be make himself familiar with at least two of the four different staves headed by the C clef, a very large proportion of the works of the greatest writers must remain unintelligible to him.

It can hardly be necessary to say, that the following work, though

[^0]dealing for the most part with first principles, is not adapted to the use of beginners, save in connexion with musical practice of some kind, under the direction of a teacher. Music is an art as well as a science ; and no art can be learned wholly from books. Nor is it likely that even first principles should ever be so simply stated, or so clearly expounded, as to be intelligible to those who make no attempt to turn them to account. To two classes of persons such a book as this may be of use (1) To those who, having attained some skill in the practice, and acquired some knowledge of the theory of music, may desire to have a connected view of those parts of the latter which are indispensable to the former :-and (2) to those-a very large and increasing class-. who, familiar with other subjects, and accomplished in other ways, with little hope of becoming skilled musicians, may still desire to make some acquaintance, if not with the syntax, at least with the orthography, etymology, and prosody of the only grammar which can fairly be called universal. "Were I to begin life again," said the late Sydney Smith, "I would devote much time to music:" and " not six months before the death" of Samuel Johnson, he said to Dr. Burney, "Teach me at least the alphabet of your language." The following pages, it may be hoped, may in some degree enable those who have not had the advantage of early training to devote, with pleasure and profit, some time to music, without "beginning life again," and to acquire something more than the alphabet of the language of musicians.
J. H.

December, 1856.

CONTFNTS

CEAPTER HACE

1. Musical Sound 」
II. Tune. The Scale 2
III. Time. Rhythm 4
IV. Notation 5
V. Forms of Notes 8
VI. Intervals 11
VII. The Modern Modes 14
VIII. The Natural Scale 16
IX. Altered Notes 18
X. Altcred Intervals 20
XI. Altered Scales 21
XII. Scales in Actual Use 23
XIII. The Chain, or Circle, of Scales 26
XIV. The Minor Mode 29
XV, The Siguatures of Minor Scales 31
XVI. Bars and Measures 33
XVII. Time-Simple and Compound 36
XVIII. Time Signatures 38
XIX. Accidentals 41
XX. Chromatic Intervals 43
chapter PAGE
XXI. Modulation 46
XXII. Transposition 48
XXIII. Rhythmical Licences 51
XXIV. Graces 52
XXV. Signs of Repetition, Contractions, \&c. 55
XXVI. Marks of Expression 57
XXVII. Words relating to Pace, Intensity, and Style 59
XXVIII. The Tenor and Alto Staves 62
XXIX. The Syren and the Metronome 65
XXX. The Ancient Modes 68
APPENDIX 71

RUDIMENTS OF MUSICAL GRAMMAR.

CHAPTER I.

Musical Sound.

1. Sound is the result, or effect on the ear, of motion communicated to the air by some disturbing force. Such motion is called vibration, or undulation.
2. When the vibration of air is regular (isochronous, or equal timed) the result is musical sound; when it is irregular the result is wmusical sound, or noise.
3. In the regulated production, by voiee or instrument, of musieal sounds consists the art of music; in a knowledge of the laws which govern the suecession and combination of musical sounds consists the science of music.
4. The art and science of music involve the consideration of four properties $\mathrm{o}_{\text {. }}$ musieal sounds, their pitch, duration, intensity, and timbre.
5. The pitch (acuteness or gravity, height or depth) of a musical sound depends on the number of vibrations communicated to the air in a given time. As this number increases or diminishes so does the sound become more acute (higher), or more grave (lower).
6. The duration of a mosical sound depends on the time during which the air continues to vibrate at the same pace.
7. The intensity (loudness or softness) of a musical sound depends on the extent of the vibrations by which it is caused.
8. The timbre of (quality by which we are enabled to reeognise) a musieal sound is supposed to depend on the forms of the vibrations from which it results.

Timbre (French) literally, stamp. No English word has yet been adopted to express the same property of sound.
9. These properties are, for the most part, relative. Every sonnd is assuredly of a definite and appreciable pitch and duration; but the musical student is ehiefly eoncerned with the pitch or duration of sounds as compared with one anothertechnically, tune and time.

The ultimate source of the pleasure afforded by musical sounds is time; since tune entirely depends on the order, or regular succession of the vibrations which affect us as sound. As a matter of practice, however, time and tune must be considered separately,-the latter first.
R. M. G.

CHAPTER II.

Tune. The Scale.

10. Different sounds (sounds of different pitch) produced at the same instant, form harmony. Melody results from a succession of different, or even a repetition of the same, sounds.
11. Harmony or melody can be produced from the combination or succession of such sounds only as are found in the same musical system.

Fig. 1.
12. The basis of the modern musical system is the connexion of a given sound with another, standing in the relation to it of $2: 1$, by means of intermediate sounds also related, though less simply, to that (given) sound and to each other,
13. Such sounds presented in regular succession, form a scale, of which the topmast step is the $8^{\text {th }}$, or octave, from the $1^{\text {st }}$. (Fig. 1.)

14. The sounds of that scale which begins on the central sound of the modern musical system, are named by letters of the alphabet, or by syllables, as follows:-

1	2	3	4	5	6	7	8
C	D	E	F	G	A	B	C
$D o$	$R e$	$M i$	$F a$	$S o l$	$L a$	$S i$	$D o$

The alphabetieal names will be used exclusively in this work.
The student should sing, or play (on a piano-forte or other instrument) the scale of C, until he is thoroughly familiar with the sound, of it.
15. With a little attention, even from an uncultivated ear, it will be perceived that the successive steps of this "natural" scale are not all equal, and that some adjacent sounds are less unlike one another than others; also, that the smaller steps lead to, or immediately precede, places in the scale at which the voice easily pauses, and on which the ear is willing to dwell. These are the $4^{\text {th }}$ sound, F , and the $8^{\text {th }}, C$, the sounds immediately leading to which, E and B , are severally less unlike \mathbf{F} or \mathbf{C} than any two other adjacent sounds are to each other.
16. Moreover, further observation will prove that, notwithstanding the difference of pitch, the musical effect of $\mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$, heard in succession, is strik.
ingly like that of G, A, B, C ; in fact, that the melody or tune of both series is the same.

The student should satisfy himself of the truth of this by singing or playing the two series, or any portions of either in immediate succession.
17. The cause of this similarity is to be found in the fact that melody, or tune, does not depend on the absolute, but on the relative, pitch of sounds-on their distances apart. F the $4^{\text {th }}$ sound of the natural seale, stands in the same relation to C the $1^{\text {st }}$, as C the $8^{\text {th }}$ sound, does to G the $5^{\text {th }}$; while E the $3^{\text {rd }}$, is to F the 4^{th}, as B the 7^{th}, is to C the $8^{\text {th }}$.
18. The relation of (difference or distance between) two musical sounds is called an interval. The intervals found in passing up or down the natural scale are tones and semitones; the (two) semitones falling between the $3^{\text {rd }}$ and $4^{\text {th }}$ sounds (E and F), and the $7^{\text {th }}$ and $8^{\text {th }}(\mathrm{B}$ and C) ; the (tive) tones falling between every other two adjacent sounds. Each half of the scale, therefore, consists of four sounds separated by two tones and one semitone:
19. A succession of four sounds separated by two tones and a semitone is called a tetrachord. The natural scale, therefore, is divisible into two tetrachords, the $1^{\text {st }}$ sound of the upper of which (two tetrachords) is separated by a tone from the $4^{\text {th }}$ sound of the lower.

In fig. 1, the several intervals between the different sounds are expressed by the greater or lesser distances between the lines which represent them. The division into two tetrachords is also shown, and the tone which separates them specially indicated.
20. The modern musical system consists in a succession of seales of like construction, the highest or lowest sound of each of which is identical with the lowest or lighest of the one immediately above or below it. (See fig. 2.) The $8^{\text {th }}$ sound of one scale is therefore the $]^{\text {st }}$ likewise of another, and the $1^{\text {st }}$ of one scale the $8^{\text {th }}$ like wise of another. This similarity in the conditions of the $1^{\text {st }}$ and $8^{\text {th }}$ sounds of a scale is the canse of their bearing the same names, and, ultimately, of all sounds bearing the same names as their octaves. For as the upper C of fig. 2 is the octave to the lower C, so the D immediately above the former is the octave to the D immediately above the latter. And so of all the other sounds. Thus by a repeated application of the seven letters, C, D, E, F, G, A, B, to the seven corresponding sounds $1,2,3,4,5,6,7$, in each successive scale, names are found for all the sounds of the entire musical system, and would still be found could that system be extended ad infinitum.

CIIAP'TER III.

Time. Rhythm.

21. Time and tune, ultimately so closely connected (Chap. I.), may exist, and are often found, independeutly. Ncither, however, can clone give perfect satisfaction to the musical scnse, which is incapable of appreciating any prolonged succession of musical sounds the proportionate durations of which are not regulated by some law. The result of this kind of law is rhythm.
22. Every rhythmical passage or strain of music is divisible into phrasessuccessions of sounds dependent for their meaning on cach other, and presenting a certain completeness.

The first strain of the National Anthem consista of three phrases, each ending in the word "queer." (See fig. 3.)
23. Every phrase is further divisible into feet, and every foot into times or beats

Each phrase of the first strain of the National Anthem consists of two feet, ending severally in the words " our,"" "queen," "the," \&c. (See fig. 3.)

Fiy. 3.

The student, though as yet unacquainted uith musical notation, may be suppased to know, by ear, "The National Anthem." Otherwise, he must take some means of learning it.
24. The times, or beats, of a musical foot are accented or unaccented. A foot consists either of two beats, one accented the other unaccented, or of three beats, one accented and two maccented.

By the old masters the latter form of foot was held in the highest estimation; a foot of three beats being said by them to be in "perfect" time, and a foot of two beats in "imperfect" time.

The National Anthem is in "perfect" tine.
25. In the division of musical passages into phrases, of phrases into feet, and of feet into beats, musical rhythm resembles poetical rhythm. Here, however, the resemblance ceases; since while the number of syllables into which the poelical foot may be divided is very limited, the number of sounds into which the musical foot may be divided is very great. And not only may any one foot be divided into a vast variety of sounds, but any one sound may be prolonged through an entire foot, or through any number of feet.
E.g. The sound sung to the word "queen," in fig. 3 , is to be prolonged during an entire foot.

CHAPTER IV.

Notation.

26. The musical alphabet is chiefly composed of characters called notes, the relative positions of which on a stare, or staff, indicate the relative pitch of the som bs they represent, and the different forms of which indicate their relative length.

Fig. 4 is a stave, on which are placed four notes, of which the second is higher in pitch (and in position) than the first, the third is of the same pitch as the second, and the fourth is lower in pitch than the third. Moreover, the first is a longer note than any of the others,

Fig. 4.
 the second a shorter note than any of the others, and the third and fourth are of the same length.
27. But neither the absolute pitch of sounds, nor even their exact relation to each other in that particular, can be indicated by notes alone. A clef, or key (to their meaning) is wanted at the beginning of the stave on which they stand.
28. A clef is the only character by which a musical sound can be absolutely represented.
29. There are three clefs, and therefore three sounds only which can be absolately represented -C, G, and F.
30. The C clef represents the C which occupies the middle place in the system of musical sounds, -it having about an equal number of sounds above and below it. It is the C nearest the middle of a piano-forte, called therefore middle C . The G clef represents the $5^{\text {th }}$ sound of that scale of which middle C is the $1^{\text {st }}$; and the F clef the $4^{\text {th }}$ sound of that scale of which middle C is the $8^{\text {th }}$.

These three clefs are corruptions of old forms of the letters C, G, F.
31. Notes may stand in the spaces between the lines of a stave as well as upon them. (See fig. 4.) The notes of the natural scale occupy following lines and spaces of' a stave alternately, without exception.
32. The lines and spaces of a stave are called indifferently degrees, or positrons, and adjacent lines and spaces, following degrees.

Fig. 6 consists of two successive scales of C. 'The $1^{\text {th }}$ note of the upper suale is identical with the $8^{\text {th }}$ of the lower. (Compare par. 20.)

Fig. 6.

33. The note on the $2^{\text {nd }}$ line (from the lowest) of fig. 6 is known as F, because the F clef stands upon it. The note on the $4^{\text {th }}$ line is known as C , and that on the $6^{\text {th }}$ line as G, for a similar reason. Moreover, the notes above and below those designated by the elefs are recognised by their positions in relation to the latter; the note in the spaee immediately below F being E, that in the space immediately above it, G; and so on.
34. When higher or lower notes than those in fig. 6 are to be expressed, more lines must be added to the stave. All the notes (tweuty-three) required for average voeal music ean be plaeed on a stave of eleven lines, on the middle line of which would stand " middle" C-having the same number of notes (eleven) above as below it ; and on the $4^{\text {th }}$ and $8^{\text {th }}$ lines F and G.

Fig. 7.

35. No individual voice can utter all the somnds represented in fig. 7. Consequently, in writing music for individual voices, a smaller number of lines suffiees. Practically, whether for vocal or instrumental music, a stave of five lines is generally adopted; the particular sets, or staves, most used being the five lighest and the five lowest of the Great Stave above. (See fig. 8.)
36. The lower one of these sets or staves of five lines is used for voices and instruments of low pitch. It is distinguisbed as the bass stave. The upper stave is used for voices and instruments of higher pitch. It is distinguished as the treble stave.
37. The two stares are joined by a brace, when used together for piano-forte or harp musie; the upper stave being chiefly devoted to the notes to be played by the right hand, the lower to those played by the left. (See fig. 8.)
38. When the middle line of the Great Stave is required, it is introdnced as a leger line. (Compare figs. 7 and 8.)

Fig. 8.

Léger (French) means light.
39. Music for the lower voices of women, and the higher voices of men, demands other staves which are, equally with the treble and bass staves, extracts from, or parts of, the Great Stave. Of these we shall speak fully, later. For the present, the treble and bass staves will be used exclusively, sucli leger lines being added to them as may be required. When more than one leger liue has to be added to the top of the bass stave, it must be considered as an extract from the treble stave: vice versa, when more than one leger line has to be added to the bottom of the treble stave it must be considered as an extract from the bass stave. (See Jig. 9.)

Fig. 9.

Fig. 10. begins on middle \mathbf{C}, will appear on the treble stave as in fig. 10. The $1^{\text {st }}$ or lowest sound stands on the leger line identieal with the middle line of the Great Stave. (Par. 38.)
41. The descending natural scale whieh begins on middle C , will appear on the bass stave as in fig. 11. The $8^{\text {th }}$ or higluest sound stands on the leger line identical with the middle line of the Great Stave. (Par. 38.)
42. By joining together (with a brace) the staves on which these two scales are placed, the relation between them will be made plainer. The lowest note of the one scale is identical with the highest of the other, and the leger line on which it stands is common to both staves.

Fig. 12.

It will have been seen already that the variety of intervals in the natural scale (Par. 18) is not made manifest by the ordinary musical alphabet. To the eye, the relation between E and F is the same as that between G and A. (See fig. 12.) There is nothing in the arrangement of the lines of a stave analogous to that of the lines of the ladder in Chap. I.-reminding us always, by the different distances between them, that \mathbf{E} and \mathbf{F}, and B and C are severally a semitone apart, and that the other sounds which follow one another scalewise, are separated by tones. On this fact, however, depends the modern musical system; and of all things the stodent has to learn and to keep in mind, it is incomparably the most important. It will receive further illnstration as we proceed.

Chapter V.

Forms of Notes.

43. The relative duration of sounds is known by the different forms of the notes which represent them. The number of these forms, at present in common use, is si.r.

Fig. 13.

44. These names neither describe the forms, nor even for the most part express the relations, of the notes under them. The two first have been retained from a period when, with three others, they were the only notes in use.

$$
\text { Fig. } 14 .
$$

45. To these the crotchet, originally a hooked mininn was afterwards added. When the crotchet took its present form the hook was transferred to the quaver. The maxim and long are obsolete, and even the breve (short note) is now rarely used; while the minim (least note) is often with us, practically, the maxim (greatest note).
46. The modern forms are well described by the French names, and their relations one to another by the German.

Fig. 15

47. The stems of notes may be turued up or down indifferently. The hooked notes are frequently grouped and contracted. (See fig. 16.)
48. These notes, as respects their length, stand in the most simple relations to each other, each note being half the length of the one before it.

Fig. 16.

Exceptions to the rale whereby these notes are proportioned to each other are presented in the oecasional compression of more than its proper complement of notes into a single tiine, or beat. Of these the only instance which need be mentioned here is the triplet.
49. A triplet is a group of three notes, which (by lieence) is performed in the time of two notes of the sume form. A triplet is generally specially marked 3.

Fig. 17 (b).

50. The breve, ${ }^{\prime}$, often found in old music, and occasionally in mode: n, is equal to two semibreves, four minims, and so on.
51. Shorter notes even than the demisemi-quaver-the semidemisemiquaver and the demi-semidemisemiquaver-have been used in modern instrumental musie. In choral musie even the demisemiquaver is of rare occurrence.
R. M. G.

Fig. 18.

$$
Q_{1}=00=000
$$

Fig. 19.

52. As musical sounds are represented by notes, so are the interruptions, or cessations, of musical sound represented by rests, the different forms of which indicate the relative duration of such intermptions, or eessations.

Fig. 20.
Seuibre ve Rest. Minim Rest. Crotchet Rest. Quaver Rest. Semiquaver Rest. Demisemiquaver Rest.

53. The stems of rests are invariably turned down. Rests are never grouped.

Another form of crotchet rest \mathcal{J} is gradually superseding that in fig. 20. It has the advantage of being more readily distinguishable from the quaver rest.
54. These rests indicate, severally, silence as long as would be the sound of the notes whose names they bear.
55. The variety afforded by those forms is greatly inereased by the use of the dot which, being added to a note, or rest, increases its length one-half.

Fig. 21.

Fig. 22.

The dotted rest is little used; the last form in fig. 22 is the more common one.
The dot was called by the old masters "the point of pcrfection," because it brought the note to which it was added into perfect (i.e., triple) time-making it divisible by three.

Fig. 23.
56. The double dot inereases the length of a note by three-fourths; the second dot standing in the same relation to the first as the first to the note it follows.

Thus, a crotchet followed by a double dot is equal to seven semi-quavers-the note itself being equal to four, the first dot to two, and the second to one. (Fig. 23.)

CIIAPTER VI.

Intervals.

57. The relation of two sounds in respect to pitch is called an interval. In passing up or down the natural scale without missing a step (by degrees), we meet with no interval greater than a toue; but in shipping from one sonnd to another not next above or below it, we traverse, or measure, a larger interval. Intervals are named-1 $1^{\text {st }}$, according to the relative positions of the notes which compose them; $2^{\text {ndly }}$, according to the number of tones and semitones into which they can be divided.
58. For example, D and C are said to be a second apart, or D is said to be the second above C because, taking those notes as they appear in the natural scale, D is the $2^{\text {nd }}$ sound from C. And as D is the $2^{\text {nd }}$ above C , so is E the $3^{\text {rd }}, \mathrm{F}$ the $4^{\mathrm{th}}, \mathrm{G}$ the $5^{\text {th }}, \mathrm{A}$ the $6^{\text {th }}, \mathrm{B}$ the $7^{\text {th }}, \mathrm{C}$ the $8^{\text {th }}$ or octave, D the $9^{\text {th }}$; and those pairs of notes, severally, are said to form a second, a third, \&c. (Fig. 24.)

Fig. 24.
Second. Third. Fourth. Fitth. Sixth. Seventh. Octave. Ninth.

Fig. 25.
Second. Third.
By the same rule, E is the $2^{\text {nd }}$ to D, F the $3^{\text {rd }}, \& \mathrm{Ec}$.; and so with all the other notes.

59. But intervals admit of, and require, another and more exact kind of measurement. (Par. 57.) E is the $2^{\text {nd }}$ to D , and F the $2^{\text {nd }}$ to E . But it has been shown (Par. 18) that E is a tone above D, and F only a semitone above E. Therefore the second between D and E , must be a second of different quality from that between E and F. The two qualities of second are distinguished as major (greater) and minor (lesser).
60. The natural scale includes five major, and two minor, seconds; major second being but another name for tone, and minor second but another uame for that kind of semitone which is found in the natural scale. (Compare par. 18.)

There is another kind of semitone, which will be explained hereafter.
Seconds.

Fig. 26.

61. As there are major and minor seconds, so there aue major and minor thirds. The major third is composed of (or divisible into) two tones; the minor third, of one tone and a semitone.
62. From C to E there are two tones; from D to F , only one tone and a semitone. Consequently, C-E form a major third, D-F a minor third. The natural scale presents examples of three major and four minor thirds.

Thirds.

Fiy. 27.

63. The intervals produced by the incersion of secouds and thirds are called also major and minor.
64. By the inversion of an interval is meant the placing the lower note an octave higher, or the higher note an octave lower; thus producing a differcnt interval by notes of the stome name.
65. Two notes a second apart form, on inversion, a seventh; two notes a third apart form, on inversion, a sixth.

Fig. 28.

Third. Sixth.

Fig. 29.

66. Un mersion, two notes form an interval which is not only different in kimd but in quality. Major seconds become minor sevenths, and cice versa; major thirds become minor sixths, and vice versa.
(Five) Major Seconds. (Two) Minor Seconds.
Fig. 30.

Frg. 31 .

(Three) Major Thirds.
(Four) Minor Thirds.
Fig. 32.

(Three Miwor Sixths.

(Four) Major Sixths.

Fig. 33.

67. The fourth and its inversion the fifth, together with the octave which is the inversion of the mison-not properly an interval—are called, for the most part, perfect; the only exeeptions found in the natural scale being oue pluperfect fourth and oue imperfect fifth. The octace is, in every case, prifect.
68. The perfect fourth is composed of two tones and a semitone, the perfect fifth of three tones and a semitone. The (one) pluperfect fourth is composed of three tones, wherefore it is called also trilome; the (one) imperfeet fifth, of lwo tones and two semitones.
(Six) Perfect Fourths.
(One)
Plup. Fourth.
Fig. 34.

(Six) Perfect Fifths.
Imp. Fifth.
Fig. 35.

69. On inversion perfect intervals remain perfect, but pluperfect intervals become imperfect, and vice versa.
70. Intervals greater than an octave are generally to be regarded as mere re duplieations of those formed by notes of the same name within the octave. 'Thus fig. 36, practically a tenth, is still considered as a third; fig. 37, practically an eleventh, as a fourth; fig. 38, practically a twelfth, as a fifth, and so on.

Fig. 36.

Fig. 37.

Fig. 38.

Intervals of this extent are of rare occurrence in melody.
71. An exception, howeser, is presented in the ease of the minth, which is not alcruys to be regarded as an octave, or compound, second, but often as a distinct interval. The ninths (like the seconds and sevenths) are called major and minor.

Fig. 39.

72. Intervals greater than an octave do not admit of inversion. The ninth, therefore has no inversion.

The pluperfect fourth and imperfect fifth are less often found in melody than the perfect intervals of the same kind; whereas the major and minor intervals are used with equal frequency and freedom; presenting no difficulty in execution nor, in ordinary cases, any striking diference in effect.

CHAPTER VII.

The Modern Modes.

73. The $1^{\text {st }}$ sound of a scale is called its tonic, key note, or finul. The tonic of the natural scale is C .
74. Any note of the natural scale may be used as a tonic; i.e., we may pass, by steps not greater than tones, or smaller than semitones, from any note to its octave. But in the scales up which we shall pass, in so doing, the tones and semitones will fall always in different places; so that we shall find as many different limds of scale, in respect to the succession of tones and semitones, as tonics, viz,, seven. (Fig. 40.)

Fig. 40.

75. In these seven scales the semitones fall as follows:-

76. The order of tones and semitones in a scale is called a mode. Seven modes, or forms of scale, are therefore possible; and at least that number was once in use. Among modern musicians only too modes are used, the $1^{\text {st }}$ and $6^{\text {th }}$ (of fig. 40), and the latter not without occasional modifications whieh tend to assimilate it to the former.
77. The former of these (modern) modes is ealled the major mode, the latter, the minor mode; because the $3^{\text {rd }}$ sound of the one is distant from the $1^{\text {st }}$ two tones, or a major third; and becanse the $3^{\text {rl }}$ sound of the other is distant from the $1^{\text {st }}$ only one tone and a semitone, or a minor third. (Compare Pars. 61 and 62.)

Fig. 41.

Tone. Tune.

Fig. 42.

From C to D is a tone, and from D to E another; therefore from C to E is a major third, From A to B is a tone, and from B to C a semitone; therefore from A to C is a minor third.
78. As recpeets the relation between their $1^{\text {st }}$ and $3^{\text {rd }}$ sounds, all the modes are either major or minor ; the $1^{\text {st }}$, $4^{\text {th }}$, and $5^{\text {th }}$ being major, and the $2^{\text {nd }}, 3^{\text {rd }}, 6^{\text {th }}$, and $7^{\text {th }}$ being minor. The positions of the tones and semitones are however, in some way, different in all the modes; and without some contrivance by which they could be assimilated, only two sounds, C and A , could be used as tonies at all, and the latter only under certain conditions.
79. For, the moderu musieal system demands that the $7^{\text {th }}$ of a seale be followed by the $8^{\text {th }}$ at the smallest recognised distance; in other words, that the $7^{\text {th }}$ and $8^{\text {th }}$ sounds of an ascending seale be separated by a semitone, the $7^{\text {th }}$ in this ease being ealled the leading note; also, that the $4^{\text {th }}$ and $5^{\text {th }}$ sounds form, respeetively, a perfect fourth and a perfect fifth with the tonie.
80. On the first of these conditions, the $2^{\text {nd }}, 3^{\text {rd }}, 5^{\text {th }}, 6^{\text {th }}$, and $7^{\text {th }}$ modes (of fig. 40) are inadmissible ; and on the second, the $4^{\text {th }}$ and $7^{\text {th }}$. The five former are deficient in leading notes, and of the two latter, one (the $4_{4}^{\text {th }}$) has a plupei feet fourth, the other (the $7^{\text {th }}$) an imperfeet fifth.

The reasons for this rejection of all but the $1^{\text {th }}$ and "under certain conditions," $6^{\text {th }}$ modes, wil; appear as the student becomes better acquainted with the science of music; the fuct of their rejection is indisputable. Use is second nature. The modern musician is used to the modern system; it is the idiom in which composers have, for at least a century past, expressed their thoughts; and every modr but that of C or A , with the modifications alluded to, is, to the modern ear, if not disagreeable, certainly quaint and nnsatisfactory. The modern composer can no more express himself with freedom in the obsolete $2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}$, and $5^{\text {th }}$ (the $7^{\text {th }}$ has never been used) modes, than the modern poet in the language of Chaucer. Indeed, it is a question how far music, professedly in these modes, was ever practically performed, even in the ages when their existence was recognised, without such modifications as must have assimilated them, in most essential particulars, to those with which we are familiar.

CHAPTER VIII.

The Natural Scale.

81. "The $1^{\text {st }}$ sound of a scale," as also the $8^{\text {th }}$, "is called its tonic, tey note, or final." (Par. 73.) The $\boldsymbol{7}^{\text {th }}$ sound of the natural seale, and of every scale constructed like it, is called the leading note. (Par. 79.)

The fitness of these names needs no demonstration. The $1^{\text {st }}$ and $8^{\text {th }}$ sounds are those on wilich alone a musical passage can be brought to an end with perfect satisfaction to the ear; the $7^{\text {th }}$ sound is that which suggests, or causes expectation, that the $8^{\text {th }}$ will follow it.
82. Every other sound of the natural scale has a like name, i.e, a name due to its position in, and relation to the other sounds of, the scale.
83. The $5^{\text {th }}$ sound of a scale is called the dominant, and the $4^{\text {th }}$ the subdominant.
"Dominart" is one of many old musical terms which have altogether lost their original reaning. The dominant is properly the reciting note, and therefore the principat, or governing, note of the ecclesiastical chant. It is applied by modern musicians to the $5^{\text {th }}$ of a scale, because that sound will bear a combination which, as it can only exist in one scale, governs, or decides, it beyond the possibility of doubt.

Fig. 43.

For further explanation of the properties of the dominant, the student is referred to the Author's " Grammar of Musical Harmony," Chap. IVII.
84. The $3^{\text {ra }}$ sound of a scale is called the mediant, and the $6^{\text {th }}$ the submediant. The $2^{\text {nd }}$ is called the supertonic.
85. "Mediant" and "submediant" are used in reference to the positions of the $3^{\text {rd }}$ and $6^{\text {th }}$ of a scate, as the imer, or intermediate, sounds of the triads of the tonie and of the subdominant.
86. The triad to any given note is formed by the addition to it of its $3^{\text {rd }}$ and $5^{\text {th }}$.
87. E, the $3^{\text {rd }}$ of the scale of C , is the inner or intermediate sound of the triad of C, the tonic (Fig.44); A of the triad of F, the subdominant. (Fig. 45.)

Fig. 44.

Fig. 45.

Fig. 46.
Fig. 46 shows the name which each sound of the scale derives from its position in, and relation to the other sounds of, it.
" A succession of four sounds separated by two tones and a semitone is called a tetrachord." (Par. 19.)
88. The upper of the two tetrachords, into which a scale is divisible (par. 19) begins on the dominant, and the lower ends on the subdominant. The mediant holds the same place iu relation to the subdominant, as the leading note does to the tonic: and the supertonic holds the same place in relation to the tonic as the submediant does to the dominant.

On this account the submediant is sometimes called the superdominant.

89. As the leading note has a tendency to rise to the tonic (par. 79), so the supertonic, the subdominant, and the submediant have each a tendency to rise, or fall, to that note of the triad of the tonic which is nearest to them : e.g. that of the supertonic is to fall to the tonic (fig. 47), or to rise to the mediant (fig. 48); that of the subdominant to fall to the mediant (fig. 49); that of the submediant to fall to the dominant (fig. 50).

Fity. 47.

Fig. 48.

Fig. 49.

Fig. 50.

90. Thus the triad of the tonic (the $\mathrm{I}^{\mathrm{st}}, 3^{\text {rd }}$, and $5^{\text {th }}$ of the scale) has an ab sorbing or attractive force, fully justifying the importance attached to it in the modern system.
91. The progressions treated in par. 89 are all parts of one or other of those closes or cadences so familiar to the modern musician. They are distinguished as the perfect cadence ($f g .51 \mathrm{a}$ and b) and the plagal cadence (fg . 52). The former is the more modern and familiar form. Fig. 49 appears in both.

See also the Author's "Grammar of Musical Harmony," Chap. 30: XXVII.

Fig. 51 (a).

Fig. 51 (b).

Fig. 52.

The student should take pains to frmitiarize lis ear to these progressions, playing them on the piano-forte, or hearing them played, and, at the same time, singing first one, then another, of the individual parits.

CHAPTER IX.

Altered Notes.

92. Between every two sounds separated by a tone another sound may be placed, whereby the tone is divided into two semitones.
93. On a piano-forte, the natural scale is produced by striking a succession of white keys exclusively. Most of these white keys are separated by black keys - the intermediate sounds spoken of above; the exceptions being the keys representing E and F and B and C in each octave, which have no black key between them,-those sounds being severally a semitone apart, and a semitone being the smallest recognised musical interval. (See fig. 53.)

Fig. 53.

94. These intermediate sounds take their names either from the opper or the lower sounds adjacent to them ; or, more properly, they are regarded as elevations or depressions of the latter, and are called such and such notes sharp or flat, accordingly.

In fig. 54, the ruled lines represent the sounds of the natural scale (as in fig. 1), and the dotted lines the sounds which divide each tone into two semitones. Each of the latter, it will be seen, has two names, e.g., C sharp and D fat. Strictly speaking, C sharp and D flat are not identical, i.e., it is not mathematically true that they are the same sounds-produced by the same number of vibrations in a second. (Par. 5.) For all practical purposes, however, they may be considered as such; as, indeed they are on the piano-forte. (See fig. 55.)

Fig. 54.

Fig. 55.

95. The depression or elevation of one of the sounds of the natural scale a semitone, or, in other words, the substitution of a flat or sharp sound for a natural sound, of the same name, is indicated by placing $\frac{H}{H}$, called a sharp, or b, called a flat, before the unte which represents it.

The substitution of F sharp for F natural, or of B flat for B natural, would be expressed as in figs. 56 and 57.

Fig. 56.

Fig. 57.

96. A natural note is specially indicated by placing , called a natural, before the note which represents it.

The substitution of F patural for F sharp, or of B natural for B flat, would be expressed as in figs 58 and 59.

Fig. 58.

Fig. 59.

A natural is only called into requisition when it is necessary to contradict a foregoing sharp or flat.
97. Sharps, flats, and naturals are placed before the notes they alter. We say " F sharp, B flat," \&ce, but write, "Sharp F, flat B," \&c.

CHAP'TER X.

Altered Intervals.

98. By the alteration of one of the two notes composing it, the quality of an interval may be changed from major to minor, or from perfect to pluperfect or imperfect; and vice versa.
99. A major second is made minor by flattening its upper or sharpening its lower note; and a minor second is made major by sharpening its upper, or flattening its lower, note. (Fig. 60.)

Fig. 60.
Seconds.

100. A major third is made minor by flattening its upper, or sharpening its lower, note; and a minor third is made major by sharpening its upper, or flattening its lower, note. (Fig. 61.)

Fig. 61.
Thirdis.

101. A perfect fourth is made pluperfect by sharpening its upper, or fiattening its lower, note ; and vice versa. (Fig. 62.)

Fig. 62.
Fourths.

102. So also the inversions of these several intervals (the seventh, the sixth, and the fifth) admit of alteration; the two first from major to minor, and the last from perfect to imperfect, and vice versa.

CHAPTER XI.

Altered Scales.

103. By the alteration of one note in each, the scales of F and of G may be arranged in the same (major) mode as that of C . (Compare fig. 40.)

Fig. 63.

From A, the $3^{\text {rd }}$ of the scale of F, to B would be a major second (or tone); in flattening B (the $4^{\text {tb }}$) the interval between it and A is reduced to a minor second. (Fig. 63.)

From G (the $8^{\text {th }}$ of the scale of G) to F would be a major second; in sharpening F (the $7^{\text {th }}$) the interval between it and G (the B^{tb}) is reduced to a minor second. (Fig. 64.)

Fig. 65.
104. By a similar alteration, the scales of D and E can be arranged in the same (minor) mode as that of A. (Compare fig. 40.)

Fig. 60.

From A (the $5^{\text {th }}$ of the scale of D minor) to \mathbf{B} would be a major second; in flattening \mathbf{B} (the $6^{\text {th }}$) the interval between it and \mathbf{A} (the $5^{\text {tb }}$) is reduced to a minor second. (Fig. 65.)

From G (the $3^{\text {rd }}$ of E minor) to E would be a major second; in sharpening F (the $2^{\text {nd }}$) the interval between it and G (the $3^{\text {rd }}$) is reduced to a minor second. (Fig. 66.)
105. The scales of D and of B require, each, two alterations to assimilate them, severally, to those of C and of A . (Compare fig 40.)

Fig. 68.

106. Moreover, by still further alteration, the three major scales in fig. 40 (those of D, F, and G) can be made minor, and the four minor scales (those of $\mathrm{D}, \mathrm{E}, \mathrm{A}$, and B) major. (Fig. 69.)

Fig. 69.

107. In fact, by the alteration of a sufficient number of notes, both a major and a minor scale may be constrncted, not only on every one of the natural notes, but on every one of the altered notes. So that any note, natural, sharp, or flat, may be used as a tonic.

CHAPTER XII.

Scales in Actual Use.

"Any note, natural, sharp, or flat, may be used as a tonic." (Pur. 107.)
108. There are seven natural notes, and each of these is alterable both by a sharp and by a flat. It follows, therefore, that no fewer than twenty-one major, and twenty-one minor, scales could be expressed in musical characters, - seven beginning on natural notes, seten on flat notes, and seven on sharp notes.
109. It has been shown, however (Chap. IX.), that every sound raised by a sbarp is, practically, identical with the sound a tone above it lowered by a flat; e.g., that C sharp is produced by the same piano-forte key as D flat, G sharp by the same key as A flat, \&e. (Fig. 55.)
110. The number of major and minor scales, therefore, in actual use is much smaller than the number possible: it rarely exceeds twelve, and never, except transiently, fifteen. In only one instance, C , is the same note, made sharp as well as flat, used as a tonic; the remaining six notes being used as tonics when made sharp or flat,-not both.
111. The sharp tonics are $\mathrm{C} \# \mathrm{H} \quad \mathrm{H}$.

- naturcl tonics are $\mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{A}, \mathrm{B}$.
- flat tonies are $\mathrm{C} b, \mathrm{D} b, \mathrm{E} b, \quad \mathrm{G} b, \mathbf{A} b, \mathrm{~B} b$.

In fig. 70, the series of tonics in actual use is given in musical notation. The notes connected by \frown are identical.

Fig. 70.

112. Each of these scales requires for its completion a different number of sharps or flats; e.g., the scale of D requires two sharps, that of E b three flats, \&c. Were the number and order of these sharps or flats irregular, or without system, they could only be retained by a very laborious act of memory. Such, however, is not the case. The scales grow out of one another, and add to their number of sharps and flats, according to a simple rule which admits of no exception.
113. "The natural scale is divisible into two tetrachords, the $1^{\text {st }}$ sound of the upper of which is separated, by a tone, from the $4^{\text {th }}$ sound of the lower." (Par. 19.)

Fig. 71.

114. What is true of the natural scale is true of every scale constructed like it, 2.e., of every major scale.
115. If the second (or upper) tetrachord of any one scale be taken as the first (or lower) tetrachord of another, the new upper tetrachord added to complete the latter scale will demand a new sharp,-i.e., a sharp not found in the scale to which its lower tetrachord is common. (Fig. 72.)

The npper tetrachord of C (fig. 72) consists of G, A, B, C. Let these four notes be taken as the lower tetrachord of a scale of (i.e., beginning and ending on) G. A new upper tetrachord is required to complete this (new) scale of G, in which the F must be made sharp; -otherwise, the senitone will not fall between the $3^{\text {rd }}$ and $4^{\text {th }}$ somnds, but between the $2^{\text {nd }}$ and $3^{\text {rd }}$; since F natural and G are separated by a tone, and E and F natural by a semitone. In fact, without the F sharp, the seate of G will be imperfect for want of a leading $200 t$. (Compare par. 79.)

This experiment repeated in any other part of the musical system will be attended with a similar result,--the upper tetrachord of the new scale will, in every case, require the introduction of a new sharp.
116. A similar process applied in an opposite direction, will be attended by a similar result,-in the production of a series of scales with flats.
117. If the first (or lower) tetrachord of any one scale be taken as the second (or upper) tetrachord of another, the new lower tetrachord added to complete the latter seale will demand a new flat,-i.e., a flat not found in the scale to which its lower tetrachord is common. (Fig. 73.)

Fig. 73.

The lower tetrachord of C (fig. 73) consists of F, E, D, C. Let these four notes be taken as the upper tetrachord of a (descending) scale of F. A new lower tetrachord is required to complete this (new) scale of F, in which the B must be made flat; otherwise, the four notes will not include a semitone (fig. 74), and will, therefore, not form a tetrachord; for a tetrachord is a " succession of four sounds separated by two tones and a semitone." (Par. 19.)

Fig. 74.

This experiment, again, repeated in any other part of the musical system will be attended with a similar result, - the lower ietrachord of the new seale will, in every case, require the introduction of a new flat.
118. The second tetrachord of every scale begins a fifth above the first; vice versa, the first tetrachord of every scale begins a fifth below the second. Sharps, therefore, are generated in an order of asceuding, and flats in an order of descending, fifths. (Sce figs. 75 and 76.)

From fig. 75 it will be seen that -
119. In a series of scales, the tonics of which are perfect fifths above one another, each scale requircs a sharp more than the one before it. This additional sharp is always the leading note, and consequently always a perfect fifth above the sharp last added to form the preceding scale.
120. The tonics, perfect fifths above each other, are,-

$$
\mathrm{C}, \mathrm{G}, \mathrm{D}, \mathrm{~A}, \mathrm{E}, \mathrm{~B}, \mathrm{~F} \underset{\vec{H}}{\boldsymbol{H}}, \mathrm{C} \# .
$$

F natural is an imperfect gifth above B.

121. Of these scales the leading notes (also perfect fifths above each other) are,-

From fig. 76 it will be seen that-
122. In a series of scales the tonies of which are perfect fifths below each other, each scale requires a flat more than the one before it. This additional flat is always the subdominant ($4^{\text {th }}$ sound) of the scale, and consequently always a perfect fifth below the flat last added to form the preceding scale.
123. The tonics, perfect fifths below each other, are,-

$$
C, F, B b, E b, A b, D b, G b, C b
$$

B natural is an imperfect fifth below \mathbf{F}.

124. Of these scales the subdominants (also perfect fifths below one another) are, $F, B b, E b, A b, D b, G b, C b, F b$.
R. M. $\mathbf{G}_{\mathbf{a}}$

R

CHAPTER XIII.

The Chain, or Circle, of Scales.

125. "Every sound raised by a sharp is practically identical with the sound a tone above it lowered by a flat." (Par. 109.)
126. By availing ourselves of this circumstance once we may form a chain, o. circle, of scales, connected on the system explained in the last chapter.
127. The perfect fifth above C is G; above G, D; above D, A; above A, E; above E, B; above B, F. F 出 is identical with $\mathrm{G} b$. (Figs. 54 and 55 .) The perfect fifth above $G b$ is $D b$; above $D b, A b$; above $A b, E b$; above $E b, B b$; above $B b$, F; above F, C-the note from which we started, and in returning to which we complete the chain, or circle, of scales. (Fig. 7T.)
128. A transition like that from $F \nRightarrow$ to $G b$ is called an enharmonic change The enharmonic change in the above series could be made from B to $C b$, or from $\mathrm{C} \#$ to $\mathrm{D} b$; indeed, it could be made, though not so conveniently, in any part of the series.

Enharmonic (from the Greek) is a word having reference to a musical system in which intervals smaller than semitones formed part.

To keep within the limits of the treble stave every alternate note in Figs. 77 and 78 is placed a fourth below instead of a fiftl above. The fourth is the inversion of the fifth. (See par. 64.)

Fig. 77.

129. The same process reversed will be attended by the same result.
130. The perfect fifth below C is F; below $F, B b$; below $B b, E b$; below E'?, $A b$; below $A b, D b$; below $D b, G b . G b$ is identical with $F \neq$. The perfect fifth below $\mathrm{F} \neq \mathrm{H}$ is ; below B, E; below E, A; below A, D; below D, G and below G, C-the note from which we started. (Fig.78.)

Fig. 78.

131. The sharps or flats essential to the scale in which a musical composition is said "to be," are not placed before every individual note which may require alleration, but together, at the beginning of each stave. In this collected form they are called the (scale) signature.

The signature of every major scale is exhibited in fig. 79, which will further illustrate the contents of the preceding paragraphs. A $\$$ is placed a fourth below D $H_{\|}$, instead of a fifth above, to keep within the limits of the treble stave.
132. In the signatures, the order, whether of the sharps or flats, is never changed. If there is one sharp in a signature, it is $F \neq$; if there are more sharps than one, $F \neq$ is always the first, $C \nVdash$ the second, and so on. The same rule holds in respect to the Hats.

The note after each signature (in fig. 79) is the tonic indicated by it. Observe that-
133. The last added sharp is always the leading note, or $7^{\text {th }}$ of the scale-a minor second below the tonie; and that the last added flat is always the subdominant, or $4^{\text {th }}$ of the seale-a perfect fifth below the tonic. Therefore-
134. The tonic of the major scale is always to be found a minor second above the last added sharp of a signature, or a perfect fourth below the last added flat.
E.g. If the last sharp is $\mathrm{D} \#$, the tonic is E . If the last flat is $A b$, the tonic is ED .
135. The signatures over and under eael other (in fig. 79) are those of tonies practieally identieal: viz., B and $C b$, $F \neq$ and $G b, C \neq$ and $D b$. Without the entarmonic change, the next tonic of the ascending series would be G $\#$ -of which the leading note would be F double sharp; and the next of the descending series, $F b$-of whieh the subdominant would be B double flat.
136. A double sharp, formerly written 需, is now commonly abbreviated thus X. There is no contraction of the double flat, which is expressed thus, bb.
137. A double sharp raises a note, and a double flat lowers a note, two semitones. $\mathrm{F} \times$ is therefore identical with G, and B bith A a,-practicaily, but not theoretically. (Compare Chap. IX.)
138. It it most important, in respect to the theory of scales and intervals, that the distinetion in name between notes having the same sound be always observed

139. By substituting G for $F \times$ in the scale of $G \neq$ or A for $G O$ in the scale of Fb , we should interrupt the successiou essential to a scale, by omitting one note, and repecting another. (Compare fig. 80 with fig. 81, and fig. 82 with fig. 83.)

Fig. so.

Fig. 82.

140. So again, the interval formed by $\mathrm{C} H$ and $\mathrm{F} \times$ is the one pluperfect fourth of the seale of G $\#$ (fig. 84); that formed by C $\#$ and G, the one imperfect fifth of $\mathrm{D}(\mathrm{fg}, 85)$; while the interval formed by $\mathrm{E} b$ and $\mathrm{B} D D$ is the one imperfect fifth of the seale of $\mathrm{F} b(\mathrm{fig} .80 ;$; that formed by $\mathrm{E} b \boldsymbol{b}$ and $\mathrm{A} G$, the one pluperfeet fourth of B D. (Fig. 87.)

Fig. 84.

Fig. 85.

Fig. 86.

Fig. 87.

141. No alteration, by whatever number of sharps or flats, of either of the two notes forming an interval, can change its name and kind-which depend on the number of positions of the stave, not on the number of tones or semitones, it includes. From C to F is a fourth, whether the C or the F be natural, sharp, double sharp, or double flat.

The intervals in Fig. 88 are all fourths, ihough of different qualities-some as yet mexplained. Fig. 88.

142. Neither the double sharp nor the double flat ever appear in a signature; they are invariably accidentals.
143. When the signature is changed, in the course of a piece of musie, for another of a lesser number of sharps or flats, the places of the latter are sometimes taken by naturals, in order that special attention may be directed to the change. (Figs. 89 and 90.) The naturals should never appear but once in each part.

Fig. 89.

Fig. 90.

Fig. 89 exhibits a change of signature from B to E; fig 90 from $A b$ to F. The naturals in both instances indicate the former, as well as the present, scale.

CHAPTER XIV.

The Minor Mode.

144. "Among modern musicians, only two modes," or forms of scale, " are used," the major and the minor ; " and the latter not without occasional modifications which tend to assimilate it to the former." (Par. 76.) As the scale of C is the type, or model, of all major scales, so is the scale of A the type of all minor scales.
145. A minor scale differs from a major scale chiefly in the circumstance to which each owes its name;-the $3^{\text {rd }}$ sound of the former is a minor third from the $1^{\text {st }}$, the $3^{\text {rd }}$ sound of the latter, a major third from the $1^{\text {st. }}$ (Compare par. 77.)
146. 'This, however, is not the only difference between the two modes. A major scale is not liable to change in the quality of its intervals; a minor scale is,-its upper tetrachord assuming no less than three different forms.
147. The natural minor scale (that of A) is deficieut in a leading note; the $7^{\text {th }}$ sound being a tone, not a semitone, below the $8^{\text {th }}$. (Fig. 91.

Fig. 91.

148. Now, a tetrachord in which the semitone is not the interval last heard, leaves no impression of completeness on the ear. The upper tetrachord of the natural minor scale is, to a certain extent, satisfactory in descending, because the semitone is then the interval last heard; but it is very unsatisfactory in ascending, because this condition is not then observed. (Compare figs. 92 and 93.)

Fig. 93.

149. In ascending the minor scale, the last sound but one of the upper tetrachord is usually raised a semitone, whereby the scale is furnished with a leading note.

Fig. 94.

Thus the upper tetrachord of A minor would appear as in fig. 94.

150. This elevation of the $7^{7 \text { th }}$ sound of the minor scale induces generally, though not always, that of the $6^{\text {th }}$ also. For, in diminishing the interval between the $7^{\text {th }}$ and the $8^{\text {th }}$ sounds, that between the $6^{\text {th }}$ and $7^{\text {th }}$ is, of necessity, augmented to the same extent.

From F to $G \underset{H}{H}$ is an interval greater than a tone, and its introduction renders the upper tetrachord of La chromatio. (See Chap. 20.) Chromatic intervals are, in modern music especially, by no means forbidden, but their presence essentially alters the character of a passage and, generally y_{8} reuders it more difficult of execution.
151. In ascending the minor scale, the $6^{\text {th }}$ sound, as well as the $7^{\text {th }}$, is usually raised a semitone, whereby the interval between the two sounds is rednced to a tone.

See fig. 95, the conmon form of the upere tetrachord of $L a$ minor.

$$
\text { Fig. } 95 .
$$

152. Thas the upper tetrachord of a minor scale admits of three forms-two diatonie, one chromatic. (1) The natural diatonic form, rarely used but in descending (fig. 96); (2) the altered diatonic form, used in ascending (fig. 97); (3) the chrometic form, used both in ascending and descending (fig. 98).

Fig. 96.

Fig. 98.

153. The third of these forms (fg.98) has the advantage that while, equally with the second, it presents a leadin! note-so satisfactory to the modern earits $6^{\text {th }}$ (to the tonic) remains minor (fig. 99).
154. The quality of the $6^{\text {th }}$ of a scale is hardly less characteristic of its mode than that of the $3^{\text {rd }}$.

155. The chromatic form has also the advantage over both the others, that it is equally practicable (though somewhat difficult) to the voice, and satisfactory to the ear, ascending or descending.
156. Whatever form be adopted for the upper tetrachord of the minor scale, the lower tetrachord is incariable, so far as the place of the semitone is concerned, -the $3^{\text {rd }}$ is always minor. Hence the term minor mode.

Fig. 100.

CHAPTER XV.

The Signatures of Minor Scales.

157. Scales which result from different modes of arranging the same sounds are said to be relative. The natural scales of C and A are therefore relative; and as the one is major and the other minor, the scale of A is said to be the relative minor of C , and the scale of C the relative major of A .
158. Every major scale has a relative minor, the tonic of which (as in the case of the natural scale) is the $6^{\text {th }}$ sound of its relative major scale.

The $6^{\text {th }}$ sound of the scale of C is A ; A , therefore, is the relative minor to C .
159. "The sharps or flats, essential to the scale in which a musical composition is said to be," placed "together at the beginning of each stave," "are called the (scale) signature." (Par. 131.)
160. Every minor scale bears the same signature as its relative major; the $6^{\text {th }}$ and $7^{\text {th }}$ sounds being altered, if necessary, by accidentals.

In fig. 101 the signature of every major scale, and of its relative minor, is exhibited. It will be seen that-
161. The minor, like the major, tonics follow one another in an order of ascending and descending perfect fifths.

Fig. 101 is a transeript of fig. 79, with the $6^{\text {th }}$ to each major tonic added (in small black notes) above it. The $6^{\text {th }}$ of a major scale is the tonic of its relative minor. The black notes, therefore, in fig. 101 are the relative minors of the white notes beneath them, and the signatures belong equally to both. (Compare par. 160.)

The table may be read thus:-The relative minor of C is A ; signature, neither sharp nor flat. The relative minor of G is E; signature, F. H. And so on.
162. The signatures of minor scales being identical in every case with those of their relative majors, it is of course impossible to decide, from the signature alone, m what scale a piece of music may be. A slight inspection and a moment's consideration will, however, generally remove all uncertainty on the matter. With rare exceptions, every piece of music ends with a combination formed of the tonic, its $3^{\text {rd }}$ and $5^{\text {th }}$-the triad of the tonic-to which the $8^{\text {th }}$ is as often added; the whole combination forming the common chord of the tonic. (Fig. 102.)

Fig. 102.
$b \quad c$

The relative positions of the notes of a common chord admit of great variety; e.g., sometimes the $8^{\text {re }}$ is uppermost, sometimes the 3^{rd} and sometimes the $5^{\text {th }}$ (see fig. 102, $, u, b, c$.); but the notes form always the same intervals with the tonic, viz., the $3^{\text {rd }}, 5^{\text {tin }}$, and $8^{\text {th }}$.
163. Thus if a piece of modern music has for signature two sharps, it will certainly be either in the scale of D , or in that of its relative minor, B. If it is in D, the last combination will be that of D with its $3^{\text {rd }}, 5^{\text {th }}$ and (perhaps) $8^{\text {th }}$, viz., $\mathrm{D}, \mathrm{F} \psi, \mathrm{A}$, and D : if it is in the scale of B minor, the last combination will be that of B, viz., B , D, F \sharp, and B. Moreover, in the majority of modern movements the last chord of the tonic is immediately preceded by that of the dominant. The dominant ($5^{\text {th }}$) of D is A ; the triad of A is $\mathrm{A}, \mathrm{C} \boldsymbol{\sharp}, \mathrm{E}$. The dominant of B is $F \#$; the chord of $F \#$ is $F, A \neq$ and $C H-$ which A marked.

The dominant chord is always major.
Fig. 103 is the ordinary ending of a piece in D major; fig. 104 that of a piece in B minor. The signatures of both are the same.

Fig. 103.

Fig. 104.

Duth figures are perfect cadences. (Compare par. 91.)
164. A certain index of the minor mode is the frequent recurrence of the sharpened $7^{\text {th }}$ and, with it, that of the sharpened $6^{\text {th }}$. The sharpened $7^{\text {th }}$ of B minor is $A \neq$, the sharpened $6^{\text {th }}, \mathrm{G} \neq$. In a piece of music bearing two sharps for its signature, the presence of $A \underset{H}{H}$, especially near the beginning or the end, would indicate the scale of B minor.
165. The sharpened $6^{\text {th }}$ is of itself (as will be shown hereafter) by no means so certain an index of the minor mode as the sharpened $7^{\text {th }}$. This, however, is attended with little inconvenience, since the former is generally followed immediately by the latter.

CHAPTER XVI.

Bars and Measures.

166. "Every rhythmical passage or strain of music is divisible into phrases. Pur. 22.) " Every phrase is furthe: divisible into feet, and every foot into times, or beats." (Pur. 23.)
167. The times or beats of a musical foot are accented or unaccented. A foot consists either of two leats, one accented and one nanccented, or of three beats, one accented and two unaccented." (Par. 24.)
168. A musical passage composed of the former kind of feet is said to be in duple time; of the latter kind, in triple time. No kind of time essentially different from these two is used or, perhaps, possible.
169. The places of the accented beats in musical feet are indicated by lines draim at right angles with the stave on which the notes composing them are placed. Such lines are called bars.
170. The group of notes enclosed by two bars is called a measure. The term bar is sometimes improperly applied to the measure itself.
171. The measures in the same musical passage are all of the same value; i.e. each measure takes the same time to perform.

If one measure consists of a minim, each of the other measures will also consist of a minim, or of something equal to it;-e.g. two crotchets, four quavers, oue crotchet and two quavers, eight semiquavers, \&c. \&c.

Fig. 105 is in duple time; fig. 106, in triple time.

Fig. $106 . \quad$ Purcell.

R. M. G.
172. The end of a movement, or section of a movement, is usually marked by a double bar. When the last measure of the movement, or section, is complete the double bar takes the place of the siugle bar. When it is incomplete, the double bar serves simply as a sign that the movement or section is ended-haring 110 effect on the time whatever. (Fig. 107.)

Fig. 107 consists of the end of one section and the heginning of another. The measure in which the double bar falls is to be performed at the same pace as those measures whicl precede and follow it.

Fig. 107.
Mozarts.

173. The last double bar of a piece of music is generally increased by the addition of two or three bars diminishing towards the end

Fig. 108.

174. In practical music time is conveniently marked, or measured, by beats made with the hand, or a stick-in duple time, down and up (fig. 109), in triple time, down, right and up (Fig. 110.)

Fig. 109. Fig. 110.

In figs. 109 and 110 the lines indicate the spaces traversed by the hand (or stick) in beating time, and the arrows, the directions in which it moves.

175 It matters not by what form of note each beat of a musical passage is represented, provided that the other notes are properly proportioned to it, and to one another, and that the beats are made throughout at the same pace.

Fig. 105 might, with equal propriety, be written like fig. 111, each beat being a minim; and fig. 106 like fig. 112, each beat being a quaver: provided only that each minim in fig. 111, and each quaver in fig. 112 was performed at the same pace as each crotchet in figs. 105 and 106.

Fig. 111.

Purcell.

Fig. 112.

176. The monotony arsing from a too frequent recurrence of accented notes, together with other practical inconveniences, has given rise to another form, in which two measures are thrown into one.

Fig. 113.
Mozart.

177. This form is called common time; and, as its name would imply, it is the kind of time most frequently used.

Fig. 114.
178. In common time the beats are made,-down, left, right, up; the note performed when the down beat is made receiving a strong accent, and that on the right beat another accent, somewhat less strong.

179. The down beat in every form of measure is naturally the accented beat. Accentuations at variance with the natural (and ordinary) form are, however, occasionally made.
180. For example; notes lasting longer than one beat are sometimes begun on an unaccented part of a measure (Fig. 115), or are prolonged from the ond of one measure to the beginning of another. (Fig.116.) In either case the natural and ordinary accent is disturbed.

The form in fig. 116 is generally expressed by modern musicians in another way. (See Pur. 277.)

CHAPTER XVII.

Time--Simple and Compound.

181. Music of which the times or beats can be divided, ad infinitum, by two, is said to be in simple time,

All the examples in the last chapter are in simple time; for the value of each beat is in every case an entire note-a crotchet, a minim, or a quaver-divisible by two, ad infinitum.
182. Compound time arises from a mixture of the two species, duple and triple; each heat, in a measure of compound time, being a dotted note-divisible by three. (Figs. 117 and 118.)

$$
\text { Fig. } 117 .
$$

Fig. 118.

183. A measure is said to be in duple, or in triple, time according to the number of beats into which it is divisible; it is said to be in simple or in compound time, according to the subdivision (duple or triple) of which each beat is capable.

Figs. 119 and 120 are both in duple time, because each measure censists of two beats; but fig. 119 is in simple duple time, becuuse each beat is a whole note (divisible ad infinitum by two); and fig. 120 is in compound duple time, because each beat is a dotted note (divisible by three).

Fig. 119.

Fig. 120.

Figs, 121 and 122 are both in triple time, because each measure consists of three beats; but fig. 121 is in simple triple time, because each beat is a whole note; and fig. 122 is in compound triple time, because each beat is a dotted note.

184. In a measure of simple time there is but one principal accent-that on the first beat; in a measure of compound time there is often (and always may be) a subordinate accent-on the first note of eacb beat.

In fig. 123 the accent falls on but one note and syllable (the first) in each measure-when, lit, heigh, \&c.

Fig. 193. Old English Air.

\& c.

In fig. 124, besides the principal accents (on songs and rus), there are subardinate accents (on shep and round), necessitated by the triple division of the beats to which those notes belong.

Fig. $124 . \quad$ Old English Air.

185. When a beat, in a measure of compound time, consists of a single note the subordinate accent is not felt; the time being compound to the eye only.

In the first measure of fig. 125 the subordinate accent is not expressed, seeing that the second bcat is entirely filled by the one note over the eyllable way. In the second measure, the subordinate accent is indispensable, because the second beat consists of three notes. The third measure is practically in simple time, since both the beats consists of single notes.

Fig. 125.

186. The beats, as well in compound as in simple time, are sometimes (more especially when the pace is very slow) subdivided.

Thus four beats might bo made to each measure of fig. 123, or six to each measure of fig. 124, were they to be sung at a slow pace. This, however, is a matter simply of practical convenience, in no way niterfering with the real divisions of the measure. Fig. 124 could, by no possibility, be regulated by four equal beats, nor fig. 123 by three.

CHAPTER XVIII.

Time Signatures.

187. The number, accent, and kind, of the notes contained in each measure of a musical movement are indicated by the time signature, placed at the beginning, immediately after the scale signature.
188. Time signatures consist, for the most part, of fractions-having reference to the modern whole note, the semibreve; the fraction showing how much of, or how much more than, a semibreve each measure contains.

Thus ${ }_{4}^{2}$ indicates a time of two crotchets, ie., two fourths of a semibreve, in a measure; ${ }_{8}^{6}$, a time of six quavers, ie., six eighths of a semibreve, in a measure.
189. Quadruple, or common, time of four crotchets in a measure is specially indicated by a character, C
C is not, as might be supposed, the initial of the word "common," but properly a half circle $($, the symbol of what the old masters held to be imperfect time, -in contradistinction to perfect. or triple time, indicated by an entire circle \bigcirc. (Compare far. 24.)
190. Units are occasionally, though not commonly, used as time-signatures. 1 indicates a time of one semibreve in a measure (common time); and 2 the older form of two semibreves.
191. Thus at the opening of a movement we find commonly three characters, or groups of characters-the clef, the essential sharps or flats, and the time sigmatore. The first two are usually repeated at the beginning of every stave of each part ; the last is never expressed but once in each part-at the beginning.

Fig. 126.

Fig. 126 is the commencement of a (piano-forte) movement (compare par. 37) in the scale of E ? (see fig. 79), and in "three four" time; ie., triple time of three crotchets in a measure.

In fig. 127 all the time signatures in common use are exhibited and explained.
The number of the notes following each signature shows the number of beats in each measure; the form of each note shows the value of each beat.

The forms marked * are only found in ancient music ; those marked \dagger are modern, but rarely used.
Musical practice is not consistent in regard to the character marked \ddagger; some composers designating ${ }_{2}^{4}$ time by $\mathbb{C}^{\text {and }}$ others by $C^{\text {or even }} C$ (the sign of ${ }_{4}^{4}$ time), restricting $\mathbb{C}_{2}{ }_{2}^{2}$ time. It is greatly to be wished that all three characters were banished from the time table, and that the signatares were confined to numbers.
192. The nnmerator in triple time signatures is always an odd number-in simple triple tine, three, in compound triple, nine. The numerator in duple and quadruple time signatures is always an even number-in simple time, two or four, in compound time, six or twelve.

Fig. 127.
Table of Time Signatures.

193. The fractions in time signatures are not always expressed in their simplest or lowest forms, i.e., reduced to their lowest terms. Nor could this reduction be made in every instance with safety; seeing, for example, that ${ }_{4}^{3}$ and ${ }_{8}^{6}$ are the signatures of two kinds of time differing in every essential particular.
194. ${ }_{4}^{3}=6$. A measure with the former signature may, and often does, contain the same number of the same kind of notes as a measure with the latter signature, viz., six quavers. Yet ${ }_{4}^{3}$ being the signature of simple triple, and $\frac{6}{8}$ of compound duple, time the accentuation of those six quavers will be altogether different.
195. The natural divisions (times or beats) of a measure of ${ }_{4}^{3}$ time are crotchets, of which it will contain three, or their value. The natural divisions o a measure of $\frac{6}{8}$ time are dotted crotchets, of which it will contain two, or their ralue. These divisions are generally expressed by the grouping. (See figs. 128 and 129.)

Fig. 128.

Fig. 129.

The system of time signatures is certainly far from perfect; it is, however, universally accepted and (among musicians) understood. As any change in the alphabet of a nniversal language like music is likely to be made very slowly, and as no change would affect existing music, the student must be content, for the present, to remember that though in arithmetic ${ }_{4}^{3}=\frac{6}{6}$ in musiv, these fractions represent things essentially different.

Seu Appendix-" Time Signatures."

CIIAPTER XIX.

Accidentals.

196. Sharps or flats which, being over and above those in the signature of a piece of mosic, are placed before individual notes, are called accidentals. Under this term are included also those naturals which contradict foregoing sharps or flats, whether essential or accidental.
197. The effect of an accidental lasts throughout the measure in which it is once used; i.e., it alters every following note in it, of the same name as the one which it immediately precedes,-unless it be contradicted hy another accidental.

In fig. 130, the second F is sharp as well as the first. In fig. 131, the second B is flat as we'l as the first.

Fig. 130.

Fig. 131.

198. When the first note of one measure is unisonous with the last note of the measure immediately preceding it, an accidental placed before the latter note affects also the former, and any number of like notes in immediate succession. When the two notes are tied (see Chap. XXVI.), the accidental is usmally repeated before the second of the " like notes in immediate succession."

The Fs in the seeond measure of fig. 132 are sharp; so also is the first F in the second measure of fig. 133.

Fig. 132.

199. When the repetition of a note altered in the foregoing measure is interrupted, the aceidental must be repeated. (Fig. 134.)

Fig. 134.

The student must be prepared to meet with many inconsistencies in masical practice as respects accidentals-more especially double sharps and flats.
200. "A dowble sharp raises, and a double flat lowers, a note two semitones,"not a tone. (Compare par. 137.)

Frery tone may be dicided into two semitones, but every two semitones do not make a tone. K. M. G.
201. When a note essentially sharp or flat is required to be raised another senitone, a single sharp or flat, in addition to that already in the signature, makes it, assuredly, doubly sharp or flat. (Fig. 135.)

202. This rule is observed by some composers. Others, however, desirous of avoiding ambiguity, invariably precede double sharp or flat notes by \times or b, without reference to the single sharp already markod
 in the signature. (Fig. 136.)

Theoretically, the Fs in fig. 136 are certainly treble sharp.
203. Again. When a double sharp or flat note is followed, in the same measure, by a single sharp or flat note of the same name, some writers precede the latter by a single sharp or flat, and others by a natural, as well as a sbarp or flat.

Fig. 137.

Fig. 138.

The form of fig. 138 is the more common. The naturad is of more recent invention than the sharp or flat; and in music printed as late as the beginning of the last century the sharp is often useli, as the natural is now, to restore a flat note to its original pitch.

The following is from Purcell's Orpheus Brittanicus. Third Edition, 1721.

Fig. 139.

In modern notation the passage would stand thus :-

Fig. 140.

CHAPTER XX.

Chromatic Intervals.

204. The epithet diatonic (from the Greek) is applied to the natural scale (and to all scales of like construction) beeause, in singing it, we pass principally through tones. A scale purely diatonic would be inconsistent with the modern, or perhaps with any, musical system; it would certainly be intolerable to the modern ear.
205. By a diatonic scale is now understood a series of eight different sounds, the extremes of which are octaves to each other, separated by five tones and two semitones.

The scales in fig. 40 are all diatonic.
206. The two semitones essential to the (modern) diatonic seale are called diatonic semitones. Two notes separated by a diatonic semitone are invariably of different names.
207. A chromatic semitone is the interval between two proximate notes of the same name, one of which is altered by a sharp or flat.
208. "Between every two sounds separated by a tone, an intermediate sound may be placed, whereby the tone is divided into two semitones." (Par. 92.) One of these two semitones will, of necessity, be chromatic.

Fig. 141.

Sem.

Fig. 142.

Sem.

In fig. 141, the first semitone ($G-G \#$) is chromatic, the second ($G \#-A$ is diatonic. In fig. 142, the first semitone ($G-A \quad$) is diatonie, the second (A D-A $)^{\prime}$) is chromatic.
209. Intervals resulting from any arrangement or juxtaposition of notes found in the same diatonic scale are called diatonic intervals.
210. Diatonic intervals (compare Cluap. VL.) are major and minor seconds and thirds, and their inversions minor and major sevenths and sixths; perfect fourths, and their inversions perfect fifths; plaperfect fourths, and their inversions imperfect fifths (of each of which the same diatonic scale never includes but one); and the octave, of which the inversion is the unison-not properly an interval.
211. Certain intervals of which the upper notes are raised, or the lower depressed, a chromatic semitone, are said to be augmented. Certain intervals of which the upper notes are lowered, or the lower notes raised, a chrowatic semitone, are said to be diminished.
212. The umison, major second, perfect fifth, and major sixth admit of augmentation only ; and their several inversions, the octave, minor seventh, perfect fourth, and minor third, of deminution only.

The anison, though " not properly an interval," is, for the sake of system, often classed as such. The augmented unison, i.e., chromatic semitone-the agent of all augmentation and diminution-is one of the most impurtant of intervals.
213. The augmented unison, second, fifth, and sixth, and their inversions, the diminished octave, seventh, fourth, and third, are classec. under the gencral nawe of chromatic interrals.

Fig. 143 contains an example of esch of the chromatic intervals.
Fig. 143.

The word chromatic (from the Greek, $\chi \rho \omega \mu a$, colour), originally had reference to the ink (of different colour) uscd to express altered notes; it has been retained possibly on account of the peculiar effect (figuratively, colowr) which such notes gave to passages in which they were introduced.
214. A scale which contains one or more chomatic intervals is called a cloromatic scale.
215. The third form of the minor mode (Fig. 98) is chromatic, becanse its $6^{\text {th }}$ and $7^{\text {th }}$ sounds are separated by an augmented second.
216. A scale is more or less chromatic, according to the number of chromatic intervals it contains. The third form of the minor scale is only chromatic in so far as one interval, the augmented second, is eoncerned. Fig. 144, the most chromatic form of scale possible, is generally called the chromatic scale. It consists exclusively of semitones-in all, tuelie; seren diatonic, and five chromatic.

Fig. 144.

As every sound is practically identical with another (C with $\mathrm{D} b$, \&c.), there are many different ways of expressing the chromatic seale, the choive among which will be governed by circumstances. Fig. 144 is the commonest form.
217. Of the chromatic intervals (Fig. 143) the angmented second and diminished fourth are wore frequently used, especially in melody, than any others,--becanse they can be produced by the juxtaposition of notes which form part of the same (minor) scale.

Scale of A zainor.

Fig. 145.

Fig. 146.
F and G form an augmented second; G and C a diminished fourth. The latter interval includes the two most characteristic notes of the scale in which it is found-the leading note and the $3^{\text {rd }}$.

218. The inversion of the first of these intervals, the diminished seventh, is more sparingly, and that of the latter, the augmented fifth, hardly ever used in melody.

219. The diminished third and the angmented sixth are of still less frequent occurrence; the former being, by some theorists, considered altogether inadmissible in harmony, the latter in melody.

CHAPTER XXI.

Modulation.

220. Accidental sharps, flats, or naturals may arise, as we have seen, from either of two canses,- -the introduction of the altered $6^{\text {th }}$ or 7^{LL} of the minor mode Chap. 14), or a change of genus, from diatonic to chromatic. The sharpened $6^{\text {th }}$ and $7^{\text {th }}$ of the minor scale, never being marked in the signature, are of necessity expressed by accidentals (Par.160); and no chromatic interval can be formed without at least one altered note.
221. To these two causes of accidentals is to be added a third which, though partially connected with the first troo, must be considered separately-modulation.
222. Every musical movement is said to be in some particular scale. This expression, though true in the main, must be understood with some qualification. Since, though in every well constructed movement " some particular scale" prevails, or furnishes the majority of the notes of which it is made up, few movements, however short or simple, remain throughout in one scale; on the contrary, most movements present points of deviation into other scales, and even contain passages the scales of which are equivocal.
223. This deviation, when made into scales connected with the original scale and with one another, is called modulation; when made, at once, into scales not so connected, it is called transition.
2.4. Modulation is much more frequently used than transition; and the most common modulations are between scales which contain the greatest number of common notes, and which are therefore most intimately " connected."
224. Thus the scale of C differs from that of G only in one note, F , which is natural in the former scale, and sharp in the latter, -from that of F only in one note, B, which is natural in the former scale and flat in the latter. While the connexion between the scale of C and that of A minor is still closer-the latter, in its original unaltered form, consisting of the rery same notes as the former. (Par. 157.)
225. The commonest modulations, therefore, are from any given scale to that of the perfect $5^{\text {th }}$ above it-requiring but one additional sharp (Par. 119); to that of the perfect 5 th below it-requiring but one additional flat (Par. 122) ; to that of its relative minor ; and to that of the relative minors of the $5^{\text {th }}$ above, and of the $5^{\text {th }}$ below.

The recognition and consciousness of the tonic, under whatever variations of tonality (changes of scale), is indispensable to the intelligent and certain performance especially of vocal music; and itr frequent modulation constitutes one of the principal difficulties of modern music. This difficulty is
especially felt in performance from single parts, wherein the modulations are often but imperfectly expressed. Indeed, without examining a score, it is often difficult, and sometimes even impossible, to tell by the eye, into what scale a composition has wandered. Two or three rules will however serve to meet cases of ordinary difficulty, and enable the vocal performer to ascertain the tonic for the tine being.
227. The tonic of the new scale (i.e., the scale into which the last modulation has been made) is gencrally found a minor second above the last added sharp, or a (perfect) fourth below the last added flat.

Fig. 148.

Fig. 149.

The $\mathrm{F} \mathrm{H}_{\mathrm{H}}$ in fig. 148 indicates a modulation into G : the $\mathrm{B} b$, in fig. 159_{3} a modulation into F .
228. The new scale is unmistakeably indicated by the presence of a pluperfect fourth, or an imperfect fifth; since there is but one of either in every scale. These intervals may appear either between two notes following in immediate succession or produced sirnultaneously; i.e., either in melody (fg. 150) or in harmony (fig. 151).

Fig. 150.

Fiv. 151.

Fig. 150, an extract from a movement in 1 , ends with a modulation into C. Wither of the two notes (F or 13) which mark the modulation might belong to many different scales, but botz together can only be found in C. So G and C $\#$ (fg. 151) can only be combined in D:
229. The mode (major or minor) of a new scale can only be determined by the presence of the $3^{\text {rd }}$ from the tonic. (Par. 145.)

In fig. 152 , there is a modulation from \mathbf{C} into D ; whether it is into D minor or D major is uncertain, seeing that F (the $3^{\text {rd }}$ to D) is not expressed. The addition of the (majer) $3^{\text {rd }}, \mathrm{F}$, to the last chord of fig. 153 decides the mode.

Fig. 153.

CHAPTER XXII.

Transposition.

230. In the natural scale of C are found five major and two minor seconds, and (their inversions) five minor and two major sevenths; three major and four minor thirds, and (their inversions) three minor and four major sixths; one pluperfect and six perfect fourths, and (their inversions) one imperfect and six perfect fifths. (Compare Chap. VI.)
231. The $3^{\text {rd }}$ and $7^{\text {th }}$ sounds (mediant and leading note) bear minor secondsall the other sounds bear major seconds; the $1^{\text {st }}$ and $4^{\text {th }}$ sounds bear major sevenths, and all the others, minor sevenths. (See fig. 154.)
232. The $1^{\text {st }}, 4^{\text {th }}$, and $5^{\text {th }}$ sounds (tonic, dominant, and subdominant) bear major thirds-all the other sounds bear minor thirds; the $3^{\text {rd }}, 6^{\text {th }}$, and $7^{\text {th }}$ sounds bear minor sixths, and all the others, major sixths.
233. The $f^{\text {th }}$ sound (subdominant) bears a pluperfect fourth-all the other sounds bear perfect fourths. The $7^{\text {th }}$ sound (leading note) bears an imperfect fifth-all the others, perfect fifths.
(Fig. 154.) Intervals found in the Natural Scale.
Seconds.

Thirls.

Sixths.

Fourths.

The two minor seconds and the two major sevenths, the three major lhirds and the three minor sixths, and the one pluperfeet fourth and the one imperfect fifth, being severally inversions of each other, are found between notes of the same name.

The two minor seeonds ate E-F and B-C, the two major sevenths are F-E and C-B; the threa major thirds are C-E, F-A, and G-B, the three minor sixths are E-C, A-F, and B-G; the one plaperfect forth is $\mathrm{F}-\mathrm{B}$, the ono imperfect fifth is B-F. (See fig. 154.)
234. The natural seale of C is the type, or model, of all major scales, in the modern system. In all major scales, therefore, the several sounds ($1^{\text {st }}, 2^{\text {nd }}, \& c$.) bear the same intervals as in the scale of C ; for the sharps or flats by whose agency the order of tones and semitones is adjusted in the scale itself, operate equally on every individual interval which may be drawn from it.
235. E.g. "The $4^{\text {th }}$ sound" of the scale of C" bears a pluperfect fourth—all the other sounds bear perfect fourths." (Par. 233.) So does the.4 ${ }^{\text {th }}$ sound of the seale of D , viz., G , the $4^{\text {th }}$ to which is C ; the C in the seale of D being essentially sharp. All the other sounds bear perfect fourths. (Compare fig. 154.)

Fig. 155.

236. Again, "the $1^{\text {et }}, 4^{\text {th }}$, and $5^{\text {th }}$ sounds of the scale of C bear major thirdsall the other sounds bear minor thirds." (Par. 232.) So do the $l^{\text {st }}, 4^{\text {th }}$, and $5^{\text {th }}$ sounds of the seale of $E b$, viz. $E b, A b$, and $B b$ (all flat in the seale of $E b$), the $3^{\text {rat }}$ to which are G, C, and D. All the other sounds bear minor thirds.. (Compare fig. 154.)

Fig. 156.

Pars: 231:2and 3 are, therefore true, nat only of the scale of $\mathrm{C}_{\text {, }}$, but of every other major scale.
237. "Melody, or tune, does- not depend on the absolute, but on the relative, pitch of sounds-on their distanoes apart." (Par. 17.) When the notes of a musical passage are separated by the same intervals, the metody they form will be the same. Any musical idea may, therefore, be expressed at any pitch, i.e., in any scale.
238. The expression of a musical idea in a scale other than that in which it was first conceived or expressed, is ealled transposition.
239. In transposing a passage from one seale to another, we represent each note in the one scale by the corresponding note (the note occupying the same place) in the other, and adjust the intervals of which it is composed, by substitating the signature of the new scale for that of the old one.
R. M. G.

H

Thus, tig. 157 is in the scale of C , which requires neither sharp nor flat. To transpose it into D we must place two sharps at the head of the stave; to transpose it into $\mathbf{E} \mathbf{D}$, three flats; into \mathbf{E}, four sharps; into F, one flat; into G, one sharp, and so on.

The student is recommended to try the efflget of the above transpositions without sharps or nats.

CHAPTER XXIII.

Rhythmical Licences.

240. The rhythmical licences admissible in musical performance consist in the compression of more than its proper complement of notes into a single beat, and in the slackening, or accelerating, the pace of particular beats. Of the former, the most common example, the triplet or triolet, has been already noticed.
241. "A triplet is a group of three notes, which (by licence) is performed in the time of two of the same kind." (Par. 49.)
242. The triplet is but another mode of indicating a change of time, from simple to compound, in the particular passages where it is introduced.

Figs. 158 and 159 are identical.
Fig. 158.

Fig. 159.

243. With the triplet may be classed all groups whatever of irregular rhythmical formation. In modern instrumental music these are found in great numbers and variety,-five or more notes being sometimes compressed into the time of four of the same kind, four or more, into that of three, \&c. \&c.

Such groups are best stadied in connesion with musical practice.
Departcre from the average pace of a movement in the case of " particular beats," is indieated by the Italian words, Rallentando, Accelerando, \&c., to be explained in Chapter XXVH.

CHAPTER XXIV.

Graces.

244. Passages not forming an integral part of a movement-which withont essential loss to it might be, and often are, omitted-are called graces, or embellishments. The principal graces used in melody are the appoggiatura, the beat, the shake, the turn, the acciaccatura, and the portamento. The principal graces used in harmony are the tremolando and the arpeggio. Graces are, for the most part, expressed in smaller notes than those used for the integral parts of a movement.
245. The appogytatura (from appoggiare, Ital., to lean) is a small note, which, being prefixed to another, robs it of its accent and a portion of its time.
246. In general, the appoggiatura is a note of half the length of the note which it displaces; but its full time should be given to the appoggiatura, whatever be its length - the following note being shortened accordingly.

Figs. 160 and 161 are severally identical with figs. 162 and 163.

Fig. 160. Handel.

Fig. 162.

Fig. 161.

Fig. 163.

Latterly, the appoggiatura has been falling into desuetude; modern composers preferring the less equivocal forms of ordinary notation. Fig. 164 would certainly have been expressed by an earlier master as fig. 165.

247 The beat is a short appoggiatura, marle on the semitone below a principal note. Its effect is to give force and especial emphasis to that note.

Fig. 166.

248. The acciaccatura (from acciaccare, Ital, to pound) is a group of two notes, introduced with the utmost rapidity, before another note. The interval formed ov the two notes should never exceed a minor third.

249. The appoggiatura, beat, and acciaccatura should severally be uttered on the beat due to the note which they precede-not before it
250. The shake consists in a rapid alternation of two adjacent notes. It is indicated by tr., a contraction of the Italian word trillo, placed over a note which is generally preceded by an appoggiatura.

Fig. 168 is to be performed like fig. 169.

Fig. 168.

Fig. 169.

251. The shake, unless it be a very short one, is always concluded by a turn. (See fig. 169.)
252. The turn is a group composed of a principal note, and two subsidiary notes, one above and one below it. It is indicated by \sim, or $\boldsymbol{\eta}$ placed over the principal note. \sim is the sign of the direct, and \rangle of the inverted, turn.

Fig. 170, which contains an example of the direct, as well as of the inverted, turn, should be performed like fig. 171.

Fig. 170.

Fig. 171.

253. The turn, like the appoggiatura, beat. and acciaccatura, should be begun on the beat due to the note over which it is piaced. When it is placed between two notes, it should follow the first of visem.

Fig. 172 is to be performed like fig. 173.

Fig. 172.

254. The portamento (from portare, Ital., to carry) consists in the smooth utterance of two following notes, part of the time due to the first of which is given to the anticipation of the second. When (in vocal performance) each note has its own syllable, the anticipated portion of the second note is sung to the first syllable.

Fig. 174 is to be performed like Fig. 175.

Fig. 174.

Fig. 175.

255. The tremolando (from tremolare, Ital., to tremble) is produced either by the rapid iteration of the same sound or the alternation of different sounds in the same combination.

Figs. 176 and 177 are performed like figs. 178 and 179.

Fig. 176.

Fig. 177.

Fig. 178. $(4)-$

Fig. 179.

256. The arpeggio (from arpeggiare, Ital., to play upon the harp) consists in striking the sounds of a chord in rapid succession, instead of simultaneously. It is indicated as in fig. 180.
rig. 180.

CHAPTER XXV.

Signs of Repetition, Contractions, \&c.

257. The alphabet of music includes, besides notes, many characters, and even words, indicative of the style or manner of performance of the movements, particular passages, or individual notes, to which they refer.
258. Repetition is indicated by dots enclosing the passage to be repeated. These dots are generally, though not always, placed at the beginning and end of a measure.

259. Sometimes one or both of the bars enclosing a passage to be repeated are doubled; but the double bar is most often, though not always, introduced when the last measure of the passage to be repeated is incomplete.

Fig. 182.
 \&c.
260. The beginning of the passage to be repeated is frequently indicated by a sign $: 8:$, referred to at the end of it by the (Italian) words Dal Segno, i. e., from the sign.

Thus, fig. 182 might be expressed like fig. 183.

Fig. 183.

261. When the repetition is to be made from the begianing of a movement the dots are often omitted, and the words Da Capo (from the beginning), or Da Capo al Segno (from the beginning, at the sign), if there be a sign, are used.

Thus, fig. 181 might be expressed like fig. 184.

Fig. 184.

262. When, on repeticion, any measure or measures are to be omitted, the words " $1^{\text {st }}$ Time" are placed over them, and the words " $2^{\text {nd }}$ Time," over those to be substituted for them.

Fig. 185.

263. The repetition of a sinyle measure is sometimes marked by the word bis (twice) placed over it in addition to, or instead of, the dots.

Fig. 186.

264. Silcuce lasting an entire measure (properly represented only by rests equal to the contents of that measure) is often expressed by a semibrere rest, whatever be the kind of time employed.

Fig. 187.

Fig. 188.

Fig. 189.

Figs. 187, 188, 189, and 190, are all occasionally represented by fig. 191_ the form properly applicable to common time only.

Fig. 191.

265. Silence lasting longer than one measure is, in single parts, generally indicated by a number, or numbers, placed over a semibreve rest, representing the number of measures of silence.
266. In ancient music the necessity for these figures was obviated by the employment of the breve, and the long (double breve) rest.

Fig. 192, equally with fig. 193, indicates a rest of eleven measures. The two forms are sometimes combined, as in fig. 194.

Fig. 192.
Fig. 193.
Fig. 194.

207. In counting rests of more than one measure the numbers (of the measures) should be told off on the first beat of each. Thus fig. 192 should be counted, One, two, three, four; Two, two, three, four; Three, two, three, four; and so on to Eleven, two, three, four.
268. A pause placed over or under a note indicates generally that the sound due to it may be sustained as long as the performer pleases. (Fig. 195.) A pause is sometimes used to mark the end of a movement.

269. The dircet (W) is used to indicate a following note which it is not convenient or necessary to express. It is especially used at the end of a line or the bottom of a page, as a preparation for the next.

CHAPTER XXVI.

Marks of Expression.

270. A dash placed over or under a note indicates that it is not to be sustained throughout the beat, or portion of a beat, due to it, but interrupted, as though it were a much shorter note followed by rests. A dot placed over or under a note indicates a modified form of the effect due to the dash.

Fig. 196 should be performed like fig. 197, and fig. 198 like fig. 199.

271. Dashes are sometimes placed over minims, where they are understood to imply the effect represented by the word sforzato (forced). (See fig. 211.)
272. Notes with dashes over them are said to be performed staccato, i.e., cut off, separated; notes with dots over them, mezzo-staccato, i. e., half-staccato.
273. A slur placed over or under two or more notes indicates that they are to be performed legato, i.e., smoothly (literally, bound together). In rocal mnsic, the slur indicates that the notes under or over it are to be vocalized, i. e., sung to one syllable.

Fig. 200.

274. When two notes only are slurred, a stress should be laid on the first, and the second should be made staccato.

Fig. 201 should be performed like fig. 202.

Fig. 201.

275. The last of a group of slurred notes is always short, by virtue of its position.
276. When the slur is placed over two or more notes of the same name and pitch, it is called a tie or bind, and has the effect of turning them into one noteequal in length to the two added together. (Compare Par. 198.)

Figs. 203 and 204 are identical.

277. The tie is generally used to connect tico notes, the first of which is unaccented, and, more especially, the last note of one measure with the first of another. Sounds begiming on accented beats are generally expressed by entire notes, or by dotted motes.

The form in fig. 205 (Conipare par. 180) is now obsolete, that in fig. 206 having superseded it. Fig. 207, however, is not incorrect, though more often written as fig. 208.

Fig. 205.

Fig. 206.

Fig. 207.

Fig. 208.

278. In prolonging a note begun on an waccented beat to an accented beat, "the natural and ordinary accent" of the measure in which it appears "is disturbed." (Par. 180.) The result of this clisturbance is called syncopation. Syncopation is rendered more apparent by the employment of the sign \Longrightarrow, or the letters $S z$. (Sce Fig. 811.)

CHAPTER XXVII.

Words relating to Pace, Intensity, and Style.

279. The vocabulary of music has been emriched, or corrupted, by the contributions of every people among whom musical composers, performers, or even transcribers, have been found. Lively, Doncement, Feierlich, \&c. \&c., are used severally to indicate the pace, intensity, or style, of music printed in England, in France, or in Germany.
280. These words carry with them the disadvantage of being intelligible only to the people of those conntries, or to those who have studied their language,a disadvantage the more to be deprecated from the fact that musicians possess a sort of common language in Italian, the musical terminology of which is more or less accepted by every musical people.

A complete list of Italian words relating to pace, intensity, and style, would furnish material for a Musical Dictionary. The following lists contain some of the most important, classed under their several heads. The English words imnediately following the Italian are such literal translationsias would be found in a dictionary. They represent very imperfectly the meanings of the latter as applied to music, which indeed are only to be ascertained from a close stady of Italian, or considerable experience in musical performance. Thus, Grave, Lento, and Large, may be regarded as equivalents, so far as pace only is concerned; but each indicates a different style of performance,-Grave implying more solemnity than Lento, and Largo more dignity or breadth than either.
281. Words relating to pace, intensity, and style, admit in every instance of contraction, and generally of modification, by the augmentation or diminution for which the Italian language presents such facility. Sometimes two or more fre joined together in a way that appears somewhat contradictory, until it is understood that they refer not only to pace, but to style also. Thus, Allegro Andante means lively in manner, but somewhat deliberate in pace.

Each of the words in fig. 209, excepting the three first, may be considered to express a quicker movement than the one before it.

Fig. 209.
Words relating to Pace.

S GRAVE, grave.
LENTO, slow.
laRgo, broad.
Larghetto, rather broad, not so slow as Largo.
Adaghssimo, very leisurely, slower than Adagio. ADAGIO, leisurely.

Andantino, going gently, slower than Andante. ANDANTE, going at a moderate pace.

Allegretto, rather merry, not so fast as Allegro. ALLEGRO, merry, lively. PRESTO, quick.

Prestissimo, very quick.

Connccted with the above are the following :-
Fig. 210.

```
Accelerando,* accelo., accelerating (the pace).
Rallentando,* rallo., slackening (-).
Stringendo, strin \({ }^{\circ}\), pressing onwards.
Più Mosso, more moved, quicker.
Ritardando, ritaro., retarding.
Ritenuto, biten‥, holding back.
A Tempo, in time, (after an Acceli. or Rallo.).
In Istesso Tempo, in the same time; i.e., the times, or beats, the
    same, whatever be the forms of the notes.
Alla Breve, by the breve; i.e., the breve being regarded as the
        whole note-each beat being a minim.
\(\xrightarrow[\text { Tempo Ordinario, (in) ordinary time }]{- \text { Comodo }- \text { convenient }-}\}\) neither fast nor slow.
    ** These words are correlatives.
```

Midern composers frequently add to the words above, an exact indication of the pace of their music, by a reference to the Metronome. (See Chap. XXIX.)

Fig. 211.

Words relating to Intensity.

> Piano,* pia., p, soft.
> Mezzo Piano, mez. pia., mp, rather soft.
> Pianissimo, pias ${ }^{\text {mo }}$., $p p$, very soft.
> Forte,* for., f, loud.
> Mezzo Forte, mez. for., mf, rather loud.
> Fortissimo, formo., ff, very loud.
> Cbescendo, \dagger cres., or \longrightarrow, increasing (in loudness).
> Decrescendo, \dagger decres., or \longrightarrow, decreasing (in loudness).
> To the above may be added :
> Forte Piano, fp, loud and (immediately after) soft.
> Sforzato, sz, forced (applicable to single notes only).
> Rinforzando, binforz., forcing (applicable to passages).
> Calendo, descending
> Perdendosi, losing itself decreasing in speed and
> Diminuendo, diminishing (gencrally) in intensity.
> Smorzando, extinguishing
> Dolce, soft.
> * \dagger These and their dependent words are correlatives.

All these words are liable to modification by the addition of one or more others, expressive partly of pace, but more especially of style. The following are some of the most important of them :-

Fig. 212.
Words relating (chiefly) to Style.

Agitato, agitated.	Maestoso, majestic.
Animato, animated.	Marcato, marked.
A poco 4 poco, by degrees.	Molto, much, very.
Assar, sufficiently.	Meno, less ; e. g., Meno Allegro.
Ben, well ; e.g., Ben Marcato.	Mezzo, half.
Brillante, brilliant.	Moderato, moderate.
Con, with. (Con) Brio, mirth.	Non, not; e. g., Non troppo Lento Pıù, more ; e.g., Piu Animato.
Espressione, expression.	Poco, little.
- Fuoco, fire.	Quasi, almost, as though.
- Moto, motion.	Sempre, always ; e.g., Sempre p p
- Tenreezza, tenderness.	Sostrnuto, sustained.
Espressivo, expressive.	Staccato, cut off.
Giusto, exact.	Tendio, held, sustained.
Grazioso, graceful.	Vivace, lively.
Legato, bound.	Volti, turn.
Mı, but ; e. g., Ma non Rallo.	Segue, it follows.

282. The words in fig. 209 are all used occasionally as noun-substantives. We speak of an Adagio, an Andante, an Allegro-as of movements to be performed in the styles indicated by those words.

CHAPTER XXVIII.

The Tenor and Alto Staves.

"All the notes (twenty-three) required for average vocal music can be placed on a s'ave of eleven lines." (Par. 34.) But "no individual voice can utter" twenty-three sounds; consequently, in writing music for individual voices, a smaller number of lines suffices. "Practically, whether for vocal or instrumental music, a stape of five lines is generally adopted; the particular sets, or staves, most used being the five highest and the five lowest of the Great Stave" of eleven. (Par. 35.)
"The lower one of these sets, or staves, of five lines is used for voices and instruments of low pitch the upper, for voices or instruments of higher pitch." (Par. 36.) "Music for the lower voices of women and the higher voices of men demands other staves, which are, equally with the treble and bass staves, extracts from, or parts of, the Great Stave of eleven lines." (Par. 39.)
283. The voices of men (beginning from the lowest) are Bass, Barytone, Tenor, and Counter-tenor; those of women are Contralto, Mezzo-soprano, Soprano, and Treble. The highest of the former, the Counter-tenor, is almost identieal in compass with, though very different in timbre from, the lowest of the latter, the Contralto. The Treble nay be regarded rather as a puerile than a female voice.

The relative places, in the musical system, of these voices is exhibited in fig. 213, and the relations of the different staves they occupy to the Great Stave is shown in fig. 214.

Fig. 214.

284. Of the seven staves (in fig. 214) two are headed by the F clef, four by the C clef, and one only by the G clef.
285. The $4^{\text {th }}$ line of the Great Stave (indicated by the F elef), is also the $4^{\text {th }}$ line of the bass stave; but it is the $3^{\text {rd }}$ line of the barytone stave, the $2^{\text {nd }}$ of the tenor, mo the $1^{\text {st }}$ of the contralto.
286. The $6^{\text {th }}$, or middle, line of the Great Stave (indicated by the C elef), whieh. forms no part of the baş or of the treble stave, is the $5^{\text {th }}$ line of the barytone, the $4^{\text {th }}$ of the tenor, the $3^{\text {rd }}$ of the contralto, the $2^{\text {nn }}$ of the mezzo soprano, and the $1^{\text {st }}$ of the soprano.
287. The $8^{\text {th }}$ line of the Great Stave (indicated by the G clef), which forms no part of the bass, barytone, or tenor stave, is the $5^{\text {th }}$ line of the contralto stave, the $4^{\text {th }}$ of the mezzo-soprano, the $3^{\text {rd }}$ of the soprano, and the $2^{\text {nd }}$ of the treble.
288. Two of these staves, the barytone and the mezzo-soprano, have become obsolete. Music for the barytone voice is now commonly written on the bass stave; music for the mezzo-soprano voiee, on the contralto, the soprano, and even the treble stave, which latter, in England, is generally substituted for the soprano.

The treble stave was once used exclusively for instrumental music, and has not even yet been universally adopted for vocal. The soprano stave is still much used on the Continent.
289. Thus the staves in actual use are but five, and, in England, only four,the bass and tenor for the voices of men, the contralto (or alto) and treble for the voices of women and children.

The bass and treble staves, the lowest and the highest of the Great Stave of eleven lines (see Chap, IV.), can need ne further explanation.
290. On the $4^{\text {th }}$]ine of the tenor stave is found the C clef. (Seefig. 214.) The C clef, it will be remembered, is the distinguishing mark of the $6^{\text {th }}$, or middle, line of the Great Stave of eleven liines. Consequently, the $4^{\text {th }}$ line of the tenor stave is identical with the $6^{\text {th }}$ of the Great Stave: and, further, the $1^{\text {st }}, 2^{\text {nd }}, 3^{\mathrm{rd}}$, and $5^{\text {th }}$ lines of the former are identical with the $3^{\text {ru }}, 4^{4^{\text {in }}}, 0^{\circ-}$, and $7^{\text {th }}$ of the latter.
291. On the $3^{\text {rd }}$ line of the contralto stave (See $f g$. 214) is found the \mathbf{C} clef-the distinguishing mark of the $6^{\text {th }}$ or middle line of the Great Stave. Consequently, the $3^{\text {rd }}$ line of the contrelto stave is identical with the $6^{\text {th }}$ of the Great Stave; and further, the $1^{\text {tt }}, 2^{\text {nd }}, 4^{\text {th }}$, and $5^{\text {th }}$ lines of the former with the $4^{\text {th }}, 5^{\text {th }}, 7^{\text {th }}$, and $8^{\text {th }}$ lines of the latter.

Familiarity with the tenor and contralto staves is only to be attained by practice; but it is certain that the difficulty sometimes attendant on this arises entirely from the fact that their relation to the Great Stave, and therefore to the more familiar treble and bass staves, is not at all, or but imperfectly, understood. One stave is of course, of itself, as easily mastered as another ; and any difficulty found in reading from the tenor and alto staves must arise from a hitherto exclusive use of the treble and puss.
292. The $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ lines of the tenor stave are identical with the $3^{\text {rd }}, 4^{\text {th }}$, and $5^{\text {th }}$ of the bass; the top line of the tenor stave is identical with the bottom line of the treble; and the $4^{\text {th }}$ (or clef) line of the tenor stave is that leger line which connects the bass with the treble. (Fig. 215.)

293 The $1^{\text {st }}$ and $2^{\text {nd }}$ lines of the contralto stave are identical with the $4^{\text {th }}$ and $5^{\text {th }}$ of the bass; the $4^{\text {th }}$ and $5^{\text {th }}$ lines of the contralto stave with the $1^{\text {st }}$ and $2^{\text {nd }}$ of the treble; and the $3^{\text {rd }}$ (or elef) line of the contralto stave is identical with the leger line connecting the bass with the treble. (Fig. 216.)

The student must be warned that, notwithstanding the recent multiplication of editions of popular musical works, in which parts for the alto and tenor voices are printed on the treble stave (the former sometimes, and the latter always, an octave higher than their proper pitch), anything like an extensive acquaintance with classical music is quite impossible without familiarity with the alto, tenor, and soprano staves.

CHAPTER XXIX.

'The Syren and The Metronome.

294. "The pitch of a musical sound depends on the number of vibrations communicated to the air in a given time" (Par.5), -its duration, "On the time during which the air continued to vibrate at the same pace." (Par.6.)
295. Although " the mnsical student is chiefly concerned with the pitch and duration of sounds as compared witl one another," yet, " every sound is assuredly of a definite and appreciable pitch and duration." (Par. 9.)
296. C, the centre of the musical system (Par. 30), is the result of 256 vibrations per second; its octave above, of 512 ; and its octave below, of 128 . The highest C on an ordinary Piano-forte is the result of 2048 vibrations per second; the lowest C , of 32. The octave below the latter, the result of 16 vibrations per second, has till lately beeu thought to be the lowest sound appreciable by the human ear.
297. It is difficult to believe that even the lowest of these numbers is to be counted; yet methods whereby their correctness could be ascertained indirectly have been known for a great length of time ; and mechanieal science has recently made even a direct estimation of it possible. The most perfect of these contrivances is an instrunent called the Syren, invented by a French mathematician, Cagniard de la Tour.
298. The Syren (see fig. 218) consists of cylinder A, generally about 2 inches long and 3 incles in diameter, the table, or top, of which is piereed with 25 holes placed in a eirele at equal distances apart. In immediate contact with this table is placed a disk B , about $1 \frac{1}{2}$ inch in diameter, pierced with the same number of holes as, and exactly comeiding with, those in the table of the cylinder. By means of a short pipe C, commonicating with a bellows, a blast of air, slightly compressed, is forced into the cylinder, from which its only means of escape is through the holes in the top of it, whem those of the disk are brought immediately ocer them. The holes of the disk and of the cylinder being cut obliguely and in opposite directions, the air, in its effort to escape from the latter, sets the former spinning, and brings each of the holes of the one successively over each of those of the other. Every time this happens, the compressed air, in its escape from the cylinder, gives a pulsation to the external air, which pulsation, if repeated at regular intervals and with sufficient rapidity, produces necessarily a musical sound.
299. "As the number of vibrations (or pulsations) communicated to the air in a qiven time jncreases or diminishes, so does the sound become more acate or more grave." (Par.5.) In the case of the Syren, the number of vibrations will depend on the pace at which the disk revolves,-which pace, again, depends on the force with which the air is driven into the cylinder.
R. M. G.
300. The number of revolutions, and partions of revolutions, made by the disk, are recorded by two hands, somewhat similar to those of a watch, each being centred on a separate dial, and acted upon by a mechanical contrivance which connects them with the axis of the disk D ; the time in which these revolutions are made being ascertained by a stop-watch, or a pendulum beating seconds.

Thus, supposing 5 revolutions of the disk to be made in a second while a note of a given pitch was maintained, it would prove that that note (e. g., fig. 217) was the result of 125 vibrations per second; seeing that, the disk being pierced with 25 holes,

Fig. 217.
 each revolution of it was the caase of 25 vibrations.

Fity. 218.
THE SYREN.

The application of the Syren to practical music is at present too remote to justify a more minute ancount of it here. The exact measurement of the time of sounds is at once more simple, and prac. tically more important to the student, than that of their tune. This is effected by means of Maelzel's Metronome.
301. Maelzel's Metronome (fig. 219) consists of a pendulum A B, laxing an index $\mathrm{B} C$, which is furnished with a weight M, easily moveable along its whole length. On the position of M depends the pace at which the pendwum $A B$ will oscillate to and fro, or, more properly, the number of oscillations it will make in a given time. The figures on the index B C indicate this number per minute, supposing the moreable weioht M to be valaed immediately urder any one of them.

Thus, if the top of M be placed against the line marked 160 , the pendulum $\mathrm{A} B$, and the index $\mathrm{B} C$, will make 160 vibrations per minute: if it be placed against the line 50 , it will make 50 vibrations per minute; the former being the largest, the latter the smallest, number possible.
302. A composer or editor, who desires to indicate the exact time at which a given movement is to be performed, has only to mark against the form of note which represents each beat the figure under which the weight M is to be placed on the index B C, and the pendulum will oscillate at the pace at which each beat is to be made.

Thus $=100$, means that each crotchet is to be performed, and each beat (equal to a crotchet) made, in the time of one oscillation of the pendulum, when M is placed against the line marked 10 .

Fig. 219.
THE METRONOME.

Although, for the purpose of Keeping time in musical performance, the Metronome never hat been nor perhaps ever can be used, for the purpose of indicating it, it is most valuable. When at hand it is, of course, an indisputable evidence of the intention of the composer; and even hen no at hand it is hardly less useffll, since a moderate degree of practice will enable a conductor, or performer, to remember the pace at which the pendulum vibrates when the weight is in this or that position, and thus to carry out the design of the composer, if not perfectly, at least with far more certainty than when added only by such words as Andante, Allegro, \&c. 8ic.

CHAPTER XXX.

The Ancient Modes.

"The order of tones and semitones in a scale is called a mode. Seven modes, or forms, of scale are therefore possible; and at least that number was once in use." (Par. 76.)
303. It has been shown (in Chap. VII.) that of the seven modes "possible" only two are available, or have hitherto been made available, in the modern systemthe $1^{\text {st }}$ and the $6^{\text {th }}$ (of fig. 40); that the $2^{\text {nd }}, 3^{\text {rd }}$, and $5^{\text {th }}$ bare been rejeeted becanse they are wanting in leading notes, and the $4^{\text {th }}$ because of its pluperfect fourth; and that the $7^{\text {th }}$ "has never been used," on account of its inperfect fifth.
304. The importance of the leading note, thongh not altogether unappreciated, would seem to have been less sensibly felt by the Old Masters than by us; for they cerrainly recognised and executed musie written in the $2^{\text {nd }}$, $2^{\text {rd }}$, and $5^{\text {th }}$ modes (of fig. 40), and, by a different disposition of the notes of each, formed as many others-in all twelve.

Fig. 220.-The Ancient Modes.
Authentic,

305. The first six of these modes (those in the upper line of fig. 220) ther cellerl authentic, the others (those in the lower line) they called plagal; giving the odd numbers to the former and the even numbers to the latter.

By the "Old Masters" are generally understood the composers who flourished befure the end of the sixteenth century; though the ancient style was maintained in many instances much later.

The large notes in fig. 220 are the tonics, or rather finals, of each mode.
306. The final of each authentic mode is identical with that of its plagal; e.g., D, not A, is the final of the $4^{\text {th }}$ mode as well as of the $3^{\text {rd }}$. A passage in an authentic mode, therefore, would range between the final and its octave; whereas a passage in a plagal mode would range between the $5^{\text {th }}$ of the final and its octave; the final being, in an autbentic mode, a boundary, and in a plagal mode, a centre.
307. Of these twelve "possible" modes only a certain number have been in common use at any time. Most of the old Theorists limited the number of modes to eight, four anthentic and four plagal, counting the authentic mode whose final is D as the $1^{\text {st }}$, and the plagal mode whose final is G as the $8^{\text {th }}$, and last; thus rejecting the only two used in the modern system - those beginning on C and A .

The arrangement of fig. 220 is that given by Zarlino in his "Instituzioni Armoniche;" but the one most commonly adopted was the following. (See fg. $2: 21$.)

Fig. 221. -The Ancient Modes.
Authentic.

Fiy. 222.
308. Of the abore, the modes most commonly used were the $1^{\text {st }}$ and $3^{\text {rd }}$, whose finals are D and E. (Figs. 222 and 224.) They are both minor modes, but differing from the modern type (fig. 223), the former in its major $6^{\text {th }}$, the latter in its minor $2^{\text {nd }}$. (Compare figs. 222 and 224 with fig. 223.)

Fig. 224.

Two of the most recent examples of the use of these modes are presented in Handel's $I_{s r a e l}$ in Egypt,-of the $1^{\text {st }}$ in the chorns, "And I will exalt Him," and of the $3^{\text {rd }}$ in "Egypt was glad."
309. The old modes were liable to modifirations, akin to those now made in the npper tetrachord of the minor scale. (Par. 146.) Thins the $4^{\text {th }}$ sound (B) of the $5^{\text {th }}$ mode, which is a pluperlect fourth from the final F , was often made flat,-by which means the mode became identical with the modern major scale of F . While in progressions like the last of the soprano part of fig. 225, the penultimate note was sung, though not written, sharp.

Until a comparatively recent period, snch modifications as the above were left to the science or taste of the performer, who would, of course, often have anticipated many of the effects of modern sonality.

Fig. 225.

310. The Old Masters were acquainted with transposition; but they never carried it (in writing) into scales requiring more than one sharp, or one flat; and it was only recently that even these were placed at the head of the stare. When the growing needs of the modern system called more than one sharp or flat into requisition, scale signatures were introduced-though at first in an imperfect form. So lately as the beginning of the eighteenth century, the last sharp, or flat, was commonly marked as an accidental.

The signature of Handel's trio, "The flocks shall leave the mountains" (in Acis and Galatea), is two flats instead of three. The scale is that of C minor.
311. The tonic of a piece of ancient music can only be ascertained by examination of the music itself; nor \& $\quad \therefore$ the signature alacays be relied on in respect to any piece composed before tne modern system was thoroughly established.

APPENDIX.

The imperfections of the time-table, though eventually remediable by an act of memors, are the cause of perpetual embarrassment to beginners-especially those who bring any mathematical training to bear on the study of practical music.

Those only who have had experience of it can quite estimate the difficulty of making a mathematical student believe, or understand, that a quantity represented by ${ }_{8}^{6}$ has properties essentially different from a quantity represented by $\underset{4}{3}$, and that six quavers represented by the former sign are to be treated altogether differently from six quavers represented by the latter.

The following nodes ol designating compound times are suggested, not in the expectation of altering anything so extensively used and accepted as the existing time-table, but as a means of explaining the nature of compound tinit.

A measure of compound duple time differs from a measure of simple triple time in the fact, that whereas the latter consists of three entire notes (e. g., crotchets), the former consists of two dotted notes (e. g., dotted crotchets) ; the amount in either being the same, but the accent being essentially different. (Compare Par. 195.) A symbol which would represent two qualities, each consisting of one and a half, as distinguished from three qualities, each consisting of one, would seem to be a certain means of preventing these two kinds of time from being confounded, which, it is certain, the present signatures do not.

It is proposed, then, to mark all compound times on a uniform system, which would at once show the number of beats in a measure and the value of each bcat, -the former by a fraction (of a semibreve) and the latter by a figure preceded by the common arithmetical symbol of multiplication.

Thus the time usually marked ${ }_{8}^{6}$ would be expressed by ${ }_{8}^{3} \times 2$; i.e., three-eighths of a semibreve multiplied by two, or, in familiar language, three quavers twice over, in each measure.

The signatures in the left-hand column of the following table are identical with those in fig. 127; ; those on the right are, one and all, different. (Compare fig. 127.)

Proposed neer Table of T'inn Signatures.

I N D E X.

The numbers refer to the Paragraphs, which form an uninterrupted series from the beginning to the end of the work.

Accent, 184.
Acciaccatura, 248.
Accidentals, 196; effect of, in the same measure, 197,-in the next measure, 198, 199.
Appoggiatura, 245 ; length of, 246.
Arpeggio, 256.

Bars, 169 ; double, 172, 173.
Beat, 247.
Beats, accented or unaccented, 24 ; made by the hand, 174 ; down beats usually accented, 179 ; subdivision of, 186.
Bis, 263.
Brace, 37.
Breve, 50.

Cadence, perfect and plagal, 91.
Clefs, 28, 29, 30.
Dash, 270.
Degrees, 32.
Demisemiquaver, shorter notes than, 51.
Direct, 269.
Dominant, 83 .
Dot, after a note or rest, 55 ; double, 56 ; over a note, 270.

Enharmonic Change, 128.
Fifth (Imperfect), its place in the natural scale, 233.

Fifths, perfect and imperfect, 67, 68; augmented, 212, 213.
Finals, of the ancient modes, 306.
Flats, 95 ; how generated, 117, 122, 123 ; double, 136, 137,-always accidentals, 142,-how contradicted, 201, 202, 203.
Feet, divisible into times, or beats, 23.
Fourth (Pluperfect) its place in the natural scale, 233.
Fburths, perfect and pluperfect, 67, 68; diminished, 212, 213.

Graces, the principal, 244; expressed in smaller notes than other passages, 244.

Harmony, 10.

Idea (Musical), to be expressed at any pitch, 237.
Intensity (Words relating to), 281, fig.161.
Intervals, 18; in the natural scale, 18;
how named, 57 ; inversion of, 64; greater than an octave, 70-72; alteration of, 98,--does not affect their names, 141 ; diatonic, 209, 210; augmented and diminished, 211-213; chromatic,-the most common, 217.
Inversion, 64; quality of an interval altered by, 66.
Italian, the common language of musicians, 280.

Leading Note, 79, 81, 89 ; last added sharp always the, 119; how regarded by the Old Masters, 306.
Legato, 273.
Lines (Leger), 38, 39.
Long, fig. 14.

Maxim, fig. 14.
Measure, 170, 171.
Mediant, 84, 85.
Melody, 10; dependent on the relative pitch of sounds, 17.
Metronome, 301 ; application of, 302.
Mode, 76 ; not determinable without the $3^{\text {rd }}$ sound, 229.
Modes, the modern, 77, the ancient, figs. 220,221 ,-all, major or minor, $78,-$ authentic and plagal, 305,-liable to modification, 309.
Modulation, 222, 223 ; the most common form of, 226.
Musical Sounds, their pitch, 5; duration, 6 ; intensity, 7 ; timbre, 8.

Naturals, 96 ; in signatures, 143.
Ninths, II; not invertible, 72.
Note, position and form of a, 26; unmeaning without a clef, 27.
Notes (Forms of) in common use, 43; their names unmeaning, 44 ; stems of, 47 ; only indicate the relative lengths of sounds, 175 .

Pace (Words relating to), 281 ; figs. 159, 160.

Passages, divisible into phrases, 22.
Pause, 268.
Phrases, divisible into feet, 23.
Portamento, 254.

Repetition, indicated by dots, 258,-by a sign, 260,-by words, 261 ; measures omitted in, 262.
Rests, 52-54; of a whole measure in any kind of time, 264; of more than one
measure, 265,-how expressed in ancient music, $266,-$ mode of counting, 267.

Rhythm (Musical), how far resembling poetical, 25.

S'cale (The Natural), formed of unequal steps, 15; divisible into two tetra chords, 19 ; how expressed on a stave, 31 ; the type or model of all major scales, 234.
Scales, of F and G, 103; of D and E (minor), 104 ; of D (major) and B (minor), 105 ; of C, F, and G (minor), and $\mathrm{D}, \mathrm{E}, \mathrm{A}$, and B (major), 106 ; major and minor, why so called, 145 ; relative, 157, 158 ; diatonic, 204 ; chromatic, 214-216.
Scales, different kinds of, 74, 75; of C and of A, types, 144; not deciderd by signatures alone, 162 ; how decided, 163,164 ; the new scale, how recognised in modulation, 227, 228.
Seconds, major and minor, 59, 60; alteration of, 99 ; augmented, 213.
Seconds (Minor), their place in the natural scale, 231.
Semitone, the diatonic, 206; chromatic, 207.

Sevenths, major and minor, 63; alteration of, 102 ; diminished, 213.
Sevenths (Major), their place in the natural scale, 231.
Shake, 250, 251.
Sharps, 95 ; how generated, 115, 118, 119 ; double, 136,137 ,-always accidentals, 142,-how contradicted, 201203.

Signatures (Time), 187, 188; sometimes units, 190; imperfection of, 193, 194.

Signatures (Scale), 131; of minor scales, 160.

Sixths, major and minor, 63, 66; alteration of, 102 ; augmented, 213.

Sixths (Minor), their place in the natural scale, 232.
Slur, 273 ; over two notes, 274 ; over two identical notes, 276.
Sound, cause of, 1 ; musical, 2.
Spaces, 32.
Stave, 26; of eleven lines, 34 ; of five lines, 35 ; the bass and treble, 36 ; the barytone and mezzo-soprano obsolete, 288 ; the tenor, 290,292 ; the alto, 291, 293.
Staves, seven different, figs. 163, 164.
Staccato, 272 ; mezzo, 272.
Style (Words relating to), 281, fig. 162.
Subdominant, 83; its tendency towards the mediant, 89; last added flat always the, 122.
Submediant, 84, 85 ; its tendency towards the dominant, 89 .
Supertönic, 84; its tendency towards the tonic, or mediant, 89.
Syncopation, 278.
Syren, 298.
System (The modern musical), basis of, 12 ; a succession of scales, 20.
Tetrachord, 19 ; the upper, variable in minor mode, 146, 152.

Thirds, major and minor, 61; alteration of, 100 ; diminished, 212, 213.
Thirds (Major), their place in the natural scale, 232.
Tie, or Bind, 276 .
Time, perfect and imperfect, 24; duple and triple, 168; quadruple or common, 176-178; simple and compound, 181, 182.
Time Table, fig. 16; suggestions for a new, Appendix.
Tone, division of into two semitones, 92.
Tonic, 73, 81; triad of the, 90 ; any note may be made a, 107 ; the tonics in actual use, 1110,111 ; how ascertained from the signature, 134; how ascertained in ancient music, 211.
Transposition, 238; how effected, 239; examples of, fig. 165 ; practised by the Old Masters, 210.
Tremolando, 255.
Triad, 86 ; of the tonic, 90.
Triplet, 49 ; marks a change of time, 242.
Thern, 252.

Voices, of men, 283 ; of women, 283.

THE EKTD.

```
coc,oc,
=%=```


[^0]:    * A Short Tieatise on the Stave. Longmans \& Co.: London.

